Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Nat Genet ; 56(5): 737, 2024 May.
Article in English | MEDLINE | ID: mdl-38750324
9.
Nat Genet ; 55(12): 2018, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062102
11.
Nature ; 622(7981): 41-47, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794265

ABSTRACT

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.


Subject(s)
Genes , Genome, Human , Molecular Sequence Annotation , Protein Isoforms , Humans , Genome, Human/genetics , Molecular Sequence Annotation/standards , Molecular Sequence Annotation/trends , Protein Isoforms/genetics , Human Genome Project , Pseudogenes , RNA/genetics
12.
Nat Genet ; 55(10): 1609, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37816890
14.
Nat Genet ; 55(4): 524, 2023 04.
Article in English | MEDLINE | ID: mdl-37055649
15.
ArXiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36994150

ABSTRACT

Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.

17.
Nat Genet ; 55(2): 167, 2023 02.
Article in English | MEDLINE | ID: mdl-36782036
18.
Nat Genet ; 55(1): 1, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36639504
SELECTION OF CITATIONS
SEARCH DETAIL
...