Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Plant Mol Biol ; 114(3): 56, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743198

Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.


Arabidopsis Proteins , Arabidopsis , Telomerase , Telomerase/genetics , Telomerase/metabolism , Telomerase/chemistry , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , RNA/metabolism , RNA/genetics , Two-Hybrid System Techniques , RNA, Plant/genetics , RNA, Plant/metabolism , Nucleic Acid Conformation , Protein Binding
2.
Nucleic Acids Res ; 52(D1): D311-D321, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37602392

Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.


Databases, Genetic , Telomerase , Nucleotide Motifs , Plants/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism
3.
J Mol Biol ; 436(4): 168417, 2024 02 15.
Article En | MEDLINE | ID: mdl-38143018

Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.


Bryopsida , RNA , Telomerase , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , Telomerase/chemistry , Telomerase/genetics , Single Molecule Imaging
4.
New Phytol ; 239(6): 2353-2366, 2023 09.
Article En | MEDLINE | ID: mdl-37391893

Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.


Telomerase , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , RNA/genetics , RNA/metabolism , Plants/metabolism
5.
Methods Mol Biol ; 2672: 285-302, 2023.
Article En | MEDLINE | ID: mdl-37335484

Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.


DNA , Telomere , DNA/genetics , Telomere/genetics , Telomere-Binding Proteins/genetics , DNA Breaks, Double-Stranded
6.
Nucleic Acids Res ; 51(1): 420-433, 2023 01 11.
Article En | MEDLINE | ID: mdl-36546771

In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.


Hymenoptera , Telomerase , Animals , Telomerase/genetics , Telomerase/metabolism , Hymenoptera/genetics , Phylogeny , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Nucleic Acid Conformation , RNA/genetics , Plants/genetics , Eukaryota/genetics
7.
Gigascience ; 122022 12 28.
Article En | MEDLINE | ID: mdl-37848616

BACKGROUND: While web-based tools such as BLAST have made identifying conserved gene homologs appear easy, genes with variable sequences pose significant challenges. Functionally important noncoding RNAs (ncRNA) often show low sequence conservation due to genetic variations, including insertions and deletions. Rather than conserved sequences, these RNAs possess highly conserved structural features across a broad phylogenetic range. Such features can be identified using the covariance models approach, which combines sequence alignment with a secondary RNA structure consensus. However, running standard implementation of that approach (Infernal) requires advanced bioinformatics knowledge compared to user-friendly web services like BLAST. The issue is partially addressed by RNAcentral, which can be used to search for homologs across a broad range of ncRNA sequence collections from diverse organisms but not across the genome assemblies. RESULTS: Here, we present GERONIMO, which conducts evolutionary searches across hundreds of genomes in a fully automated way. It provides results extended with taxonomy context, as summary tables and visualizations, to facilitate analysis for user convenience. Additionally, GERONIMO supplements homologous sequences with genomic regions to analyze promoter motifs or gene collinearity, enhancing the validation of results. CONCLUSION: GERONIMO, built using Snakemake, has undergone extensive testing on hundreds of genomes, establishing itself as a valuable tool in the identification of ncRNA homologs across diverse taxonomic groups. Consequently, GERONIMO facilitates the investigation of the evolutionary patterns of functionally significant ncRNA players, whose understanding has previously been limited to individual organisms and close relatives.


Algorithms , RNA , Phylogeny , Sequence Alignment , Genomics , RNA, Untranslated/genetics , RNA, Untranslated/chemistry
8.
Nucleic Acids Res ; 49(13): 7680-7694, 2021 07 21.
Article En | MEDLINE | ID: mdl-34181710

The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.


Evolution, Molecular , RNA, Plant/chemistry , RNA, Plant/genetics , RNA/chemistry , RNA/genetics , Telomerase/chemistry , Telomerase/genetics , Mutation , Nucleic Acid Conformation , RNA/biosynthesis , RNA Polymerase II/metabolism , RNA Polymerase III/metabolism , RNA, Plant/biosynthesis , Sequence Alignment , Telomerase/biosynthesis , Telomere/chemistry , Transcription, Genetic , Transcriptome , Viridiplantae/genetics
9.
Sci Rep ; 11(1): 12784, 2021 06 17.
Article En | MEDLINE | ID: mdl-34140564

Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1-10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.


Genetic Variation , RNA/genetics , Saccharomycetales/genetics , Telomerase/genetics , Telomere/genetics , Templates, Genetic , Base Sequence , Benzothiazoles/metabolism , Fluorescence , G-Quadruplexes , Reproducibility of Results
10.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article En | MEDLINE | ID: mdl-33670111

The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.


Arabidopsis Proteins , Arabidopsis , Gene Dosage , Nicotiana , Polyploidy , Telomerase , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomerase/genetics , Telomerase/metabolism , Nicotiana/enzymology , Nicotiana/genetics
11.
J Exp Bot ; 71(19): 5786-5793, 2020 10 07.
Article En | MEDLINE | ID: mdl-32589715

A previous study describing the genome of Zostera marina, the most widespread seagrass in the Northern hemisphere, revealed some genomic signatures of adaptation to the aquatic environment such as the loss of stomatal genes, while other functions such as an algal-like cell wall composition were acquired. Beyond these, the genome structure and organization were comparable with those of the majority of plant genomes sequenced, except for one striking feature that went unnoticed at that time: the presence of human-like instead of the expected plant-type telomeric sequences. By using different experimental approaches including fluorescence in situ hybridization (FISH), genome skimming by next-generation sequencing (NGS), and analysis of non-coding transcriptome, we have confirmed its telomeric location in the chromosomes of Z. marina. We have also identified its telomerase RNA (TR) subunit, confirming the presence of the human-type telomeric sequence in the template region. Remarkably, this region was found to be very variable even in clades with a highly conserved telomeric sequence across their species. Based on this observation, we propose that alternative annealing preferences in the template borders can explain the transition between the plant and human telomeric sequences. The further identification of paralogues of TR in several plant genomes led us to the hypothesis that plants may retain an increased ability to change their telomeric sequence. We discuss the implications of this occurrence in the evolution of telomeres while introducing a mechanistic model for the transition from the plant to the human telomeric sequences.


Telomere , Zosteraceae , Base Sequence , Genome, Plant , Humans , In Situ Hybridization, Fluorescence , Telomere/genetics
12.
Nucleic Acids Res ; 47(18): 9842-9856, 2019 10 10.
Article En | MEDLINE | ID: mdl-31392988

To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.


Evolution, Molecular , Phylogeny , RNA/genetics , Telomerase/genetics , Telomere/genetics , Allium/genetics , Arabidopsis/genetics , Asparagales/genetics , Embryophyta/genetics , Genome, Plant/genetics , Humans
13.
Methods ; 114: 16-27, 2017 02 01.
Article En | MEDLINE | ID: mdl-27595912

This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.


Allium/genetics , Cestrum/genetics , Endodeoxyribonucleases/metabolism , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Telomere/genetics , Chromosomes, Plant , Genomics
14.
Plant J ; 85(3): 337-47, 2016 Feb.
Article En | MEDLINE | ID: mdl-26716914

Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.


Allium/genetics , Chromosomes, Plant/genetics , Evolution, Molecular , Telomerase/metabolism , Telomere/genetics , Allium/enzymology , Base Sequence , Computational Biology , Genomics , In Situ Hybridization, Fluorescence , Phylogeny , Sequence Analysis, DNA , Telomerase/genetics , Transcriptome
15.
Plant J ; 82(4): 644-54, 2015 May.
Article En | MEDLINE | ID: mdl-25828846

The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.


Cestrum/genetics , Chromosomes, Plant/genetics , Telomere/chemistry , Telomere/genetics
...