Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 50(9): 1387-1394, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876912

ABSTRACT

OBJECTIVE: Both microbubble ultrasound contrast agents and acoustic phase change droplets (APCD) have been explored in hepatocellular carcinoma (HCC). This work aimed to evaluate changes to the HCC microenvironment following either microbubble or APCD destruction in a syngeneic pre-clinical model. METHODS: Mouse RIL-175 HCC tumors were grown in the right flank of 64 immunocompetent mice. Pre-treatment, photoacoustic volumetric tumor oxygenation, and power Doppler measurements were obtained using a Vevo 3100 system (VisualSonics, Toronto, Canada). The experimental groups received a 0.1 mL bolus injection of either Definity ultrasound contrast agent (Lantheus Medical Imaging) or APCD fabricated by condensing Definity. Following injection, ultrasound destruction was performed using flash-replenishment sequences on a Sequoia with a 10L4 probe (Siemens) for the duration of enhancement. Tumor oxygenation and power Doppler measurements were then repeated immediately post-ultrasound treatment. Twenty-four hours post-treatment, animals were euthanized, and tumors were harvested and stained for CD31, Cleaved Caspase 3 and CD45. RESULTS: Imaging biomarkers demonstrated a significant reduction in percent vascularity following either microbubble or APCD destruction in the tumor microenvironment ( p < 0.022) but no significant changes in tumor oxygenation (p = 0.12). Similarly, immunohistochemistry data demonstrated a significant decrease in CD31 expression (p < 0.042) and an increase in apoptosis (p < 0.014) in tumors treated with destroyed microbubbles or APCD relative to controls. Finally, a significant increase in CD45 expression was observed in tumors treated with APCD (p = 0.046), indicating an increase in tumor immune response. CONCLUSION: Ultrasound-triggered destruction of both microbubbles and APCD reduces vascularity, increases apoptosis, and may also increase immune response in this HCC model.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Liver Neoplasms , Microbubbles , Tumor Microenvironment , Animals , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Disease Models, Animal , Fluorocarbons
2.
Pharmaceutics ; 15(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111787

ABSTRACT

Tumor hypoxia (oxygen deficiency) is a major contributor to radiotherapy resistance. Ultrasound-sensitive microbubbles containing oxygen have been explored as a mechanism for overcoming tumor hypoxia locally prior to radiotherapy. Previously, our group demonstrated the ability to encapsulate and deliver a pharmacological inhibitor of tumor mitochondrial respiration (lonidamine (LND)), which resulted in ultrasound-sensitive microbubbles loaded with O2 and LND providing prolonged oxygenation relative to oxygenated microbubbles alone. This follow-up study aimed to evaluate the therapeutic response to radiation following the administration of oxygen microbubbles combined with tumor mitochondrial respiration inhibitors in a head and neck squamous cell carcinoma (HNSCC) tumor model. The influences of different radiation dose rates and treatment combinations were also explored. The results demonstrated that the co-delivery of O2 and LND successfully sensitized HNSCC tumors to radiation, and this was also enhanced with oral metformin, significantly slowing tumor growth relative to unsensitized controls (p < 0.01). Microbubble sensitization was also shown to improve overall animal survival. Importantly, effects were found to be radiation dose-rate-dependent, reflecting the transient nature of tumor oxygenation.

3.
Int J Pharm ; 625: 122072, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35932933

ABSTRACT

Prior work has shown that microbubble-assisted delivery of oxygen improves tumor oxygenation and radiosensitivity, albeit over a limited duration. Lonidamine (LND) has been investigated because of its ability to stimulate glycolysis, lactate production, inhibit mitochondrial respiration, and inhibit oxygen consumption rates in tumors but suffers from poor bioavailability. The goal of this work was to characterize LND-loaded oxygen microbubbles and assess their ability to oxygenate a human head and neck squamous cell carcinoma (HNSCC) tumor model, while also assessing LND biodistribution. In tumors treated with surfactant-shelled microbubbles with oxygen core (SE61O2) and ultrasound, pO2 levels increased to a peak 19.5 ± 9.7 mmHg, 50 s after injection and returning to baseline after 120 s. In comparison, in tumors treated with SE61O2/LND and ultrasound, pO2 levels showed a peak increase of 29.0 ± 8.3 mmHg, which was achieved 70 s after injection returning to baseline after 300 s (p < 0.001). The co-delivery of O2andLNDvia SE61 also showed an improvement of LND biodistribution in both plasma and tumor tissues (p < 0.001). In summary, ultrasound-sensitive microbubbles loaded with O2 and LND provided prolonged oxygenation relative to oxygenated microbubbles alone, as well as provided an ability to locally deliver LND, making them more appropriate for clinical translation.


Subject(s)
Microbubbles , Neoplasms , Humans , Indazoles , Oxygen , Tissue Distribution
4.
J Ultrasound Med ; 41(9): 2365-2371, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34866197

ABSTRACT

The feasibility of activating phase change contrast agents (PCCA) made from Definity (Lantheus Medical Imaging) using X-rays was investigated. A 10 mL of Definity PCCA (0.1 mL PCCA/mL) were injected into gelatin phantoms and irradiated using doses of 0, 30, 50, and 100 Gy. Size distribution and PCCA activation were measured after irradiation. Definity PCCAs were activated at a threshold of 50 Gy. Changes were visible with microscopy, visual inspection of T-flasks, and ultrasound imaging of gelatin phantoms. Moreover, increasing the radiation dose above 50 Gy appeared to further activate PCCA. These results indicate Definity PCCAs may be useful for ultrasound-based radiation dosimetry.


Subject(s)
Contrast Media , Gelatin , Humans , Phantoms, Imaging , Radiation, Ionizing , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL