Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Phytomedicine ; 128: 155489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569295

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Subject(s)
Atherosclerosis , Cation Transport Proteins , Drugs, Chinese Herbal , Ferroptosis , STAT6 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Animals , Ferroptosis/drug effects , Atherosclerosis/drug therapy , STAT6 Transcription Factor/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Signal Transduction/drug effects , Receptors, LDL/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Mice, Knockout
2.
Biochem Biophys Res Commun ; 705: 149733, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38442446

ABSTRACT

Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.


Subject(s)
Ferroptosis , Osteoarthritis , Parthanatos , Humans , Chondrocytes/metabolism , Reactive Oxygen Species/metabolism , Osteoarthritis/metabolism
3.
J Orthop Surg Res ; 18(1): 125, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36805735

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is one of the most common degenerative diseases. Its development is closely related to cartilage injury and subchondral bone remodeling homeostasis. In the present study, we combined icariin-conditioned serum (ICS) with thiolated chitosan (CSSH), a material widely used in tissue engineering for cartilage repair, to demonstrate its effect on the repair of cartilage damage and abnormal subchondral remodeling. METHODS: New Zealand rabbits were undergoing surgery for cartilage defect, and joint cavity injection was performed in each group with 0.5 mL normal saline (NS), ICS, CSSH and ICS-CSSH in the right joint every week for five times. Positioning performance was observed using VICON motion capture system. Glycosaminoglycans (GAG) secretion of articular fluid was assessed. Osteoarthritis Research Society International (OARSI) score and immunohistochemical (IHC) analysis including H&E, Safranin O and collagen II staining were employed to evaluate the morphologic repair of cartilage and subchondral bone. mRNA expression of COL2A1, MMP13 and ADAMTS5 was detected in chondrocytes from injury area. RESULTS: ICS combined with CSSH attenuated cartilage injury and abnormal subchondral remodeling in rabbits with KOA. ICS and CSSH groups showed slight improvement in positioning performance, while ICS-CSSH group exhibited better positioning performance. ICS-CSSH group showed increased GAG secretion of articular fluid and expression of COL2A1 in articular chondrocytes. Furthermore, both macroscopic observation and IHC analysis showed femoral condyle in ICS-CSSH rabbits were repaired with more native cartilage and subchondral bone regeneration. CONCLUSIONS: ICS combined with CSSH could promote the repair of osteochondral defect and stabilize subchondral bone remodeling in rabbit knees.


Subject(s)
Chitosan , Intra-Articular Fractures , Osteoarthritis, Knee , Rabbits , Animals , Joints , Flavonoids/pharmacology , Flavonoids/therapeutic use
4.
Front Pharmacol ; 13: 811808, 2022.
Article in English | MEDLINE | ID: mdl-35479319

ABSTRACT

Background: Knee osteoarthritis (KOA) is a degenerative disease that develops over time. Icariin (ICA) has a positive effect on KOA, although the mechanism is unknown. To investigate drug-disease connections and processes, network pharmacology is commonly used. The molecular mechanisms of ICA for the treatment of KOA were investigated using network pharmacology, molecular docking and literature research approaches in this study. Methods: We gathered KOA-related genes using the DisGeNET database, the OMIM database, and GEO microarray data. TCMSP database, Pubchem database, TTD database, SwissTargetPrediction database, and Pharmmapper database were used to gather ICA-related data. Following that, a protein-protein interaction (PPI) network was created. Using the Metascape database, we performed GO and KEGG enrichment analyses. After that, we built a targets-pathways network. Furthermore, molecular docking confirms the prediction. Finally, we looked back over the last 5 years of literature on icariin for knee osteoarthritis to see if the findings of this study were accurate. Results: core targets relevant to KOA treatment include TNF, IGF1, MMP9, PTGS2, ESR1, MMP2 and so on. The main biological process involved regulation of inflammatory response, collagen catabolic process, extracellular matrix disassembly and so on. The most likely pathways involved were the IL-17 signaling pathway, TNF signaling pathway, Estrogen signaling pathway. Conclusion: ICA may alleviate KOA by inhibiting inflammation, cartilage breakdown and extracellular matrix degradation. Our study reveals the molecular mechanism of ICA for the treatment of KOA, demonstrating its potential value for further research and as a new drug.

SELECTION OF CITATIONS
SEARCH DETAIL