Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IDCases ; 37: e02042, 2024.
Article in English | MEDLINE | ID: mdl-39165381

ABSTRACT

In humans, solitary renal involvement or primary renal echinococcosis is rare, accounting for about 2-4 % of cases. Usually, patients shpw no obvious symptoms, but they can manifest as renal pain, renal mass, gross hematuria, and hydatiduria in rare cases. We report a case of primary renal cystic echinococcosis, which was originally misdiagnosed as a tuberculous renal abscess.

2.
Heliyon ; 10(12): e32860, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988523

ABSTRACT

Alveolar echinococcosis (AE) may affect the composition of the host's gut microbiota, potentially disrupting the balance between the gut microbiota and metabolites. Metagenomics and untargeted metabolomics were employed to characterize changes in the gut microbiota and metabolites in mouse models infected with E. multilocularis. Pearson correlation coefficients were calculated to compare the distribution of microbiota and metabolites, revealing synergistic or mutually exclusive relationships. Functional outputs of the gut microbiota were explored using the CAZy database and six enzymes involved in carbohydrate metabolism were identified with statistically significant differential expression between infected and control groups. The resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database from the metagenomes of the groups. Firmicutes are the main carrier of ARGs in the host gut with tetQ being most prevalent. Antibiotic efflux, inactivation and target modification were the principal mechanisms of resistance. Comparison and analysis of two sets of antibiotic metabolic pathways allowed the identification of enzyme reactions unique to infected mice. KEGG pathway overview shows phenazine biosynthesis involving phzG to be one of them. In conclusion, infection with AE in mice leads to an overall disruption of gut microbiota and metabolites with the involvement of enzymes related to carbohydrate metabolism. Furthermore, antibiotic-resistance genes may play a role in disease progression, offering potential insights into the relationship between antibiotic use in AE and treatment outcomes.

3.
Article in English | MEDLINE | ID: mdl-38957995

ABSTRACT

Background: The objective of this study was to investigate the association between pre-operative body mass index (BMI) and surgical infection in perihilar cholangiocarcinoma (pCCA) patients treated with curative resection. Methods: Consecutive pCCA patients were enrolled from four tertiary hospitals between 2008 and 2022. According to pre-operative BMI, the patients were divided into three groups: low BMI (≤18.4 kg/m2), normal BMI (18.5-24.9 kg/m2), and high BMI (≥25.0 kg/m2). The incidence of surgical infection among the three groups was compared. Multivariable logistic regression models were used to determine the independent risk factors associated with surgical infection. Results: A total of 371 patients were enrolled, including 283 patients (76.3%) in the normal BMI group, 30 patients (8.1%) in the low BMI group, and 58 patients (15.6%) in the high BMI group. The incidence of surgical infection was significantly higher in the patients in the low BMI and high BMI groups than in the normal BMI group. The multivariable logistic regression model showed that low BMI and high BMI were independently associated with the occurrence of surgical infection. Conclusions: The pCCA patients with a normal BMI treated with curative resection could have a lower risk of surgical infection than pCCA patients with an abnormal BMI.

4.
Article in English | MEDLINE | ID: mdl-38824095

ABSTRACT

BACKGROUND: In patients with hilar cholangiocarcinoma (HCCA), radical resection can be achieved by resection and reconstruction of the vasculature. However, whether vascular reconstruction (VR) improves long-term and short-term prognosis has not been demonstrated comprehensively. METHODS: This was a retrospective multicenter study of patients who received surgery for HCCA with or without VR. Variables associated with overall survival (OS) and recurrence-free survival (RFS) were identified based on Cox regression. Kaplan-Meier curves were used to explore the impact of VR. Restricted mean survival time (RMST) was used for comparisons of short-term survival between the groups. Patients' intraoperative and postoperative characteristics were compared. RESULTS: Totally 447 patients were enrolled. We divided these patients into 3 groups: VR with radical resections (n = 84); non-VR radical resections (n = 309) and non-radical resection (we pooled VR-nonradical and non-VR nonradical together, n = 54). Cox regression revealed that carbohydrate antigen 242 (CA242), vascular invasion, lymph node metastasis and poor differentiation were independent risk factors for OS and RFS. There was no significant difference of RMST between the VR and non-VR radical groups within 12 months after surgery (10.18 vs. 10.76 mon, P = 0.179), although the 5-year OS (P < 0.001) and RFS (P < 0.001) were worse in the VR radical group. The incidences of most complications were not significantly different, but those of bile leakage (P < 0.001) and postoperative infection (P = 0.009) were higher in the VR radical group than in the non-VR radical group. Additionally, the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) up to 7 days after surgery tended to decrease in all groups. There was no significant difference in the incidence of postoperative liver failure between the VR and non-VR radical groups. CONCLUSIONS: Radical resection can be achieved with VR to improve the survival rate without worsening short-term survival compared with resection with non-VR. After adequate assessment of the patient's general condition, VR can be considered in the resection.

5.
Trop Med Infect Dis ; 9(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38787043

ABSTRACT

Alveolar echinococcosis (AE) stands as a perilous zoonotic affliction caused by the larvae of Echinococcus multilocularis. There is an imperative need to explore novel therapeutic agents or lead compounds for the treatment of AE. Asparagusic acid, characterized by its low toxicity and possessing antimicrobial, antioxidant, and anti-parasitic attributes, emerges as a promising candidate. The aim of this study was to investigate the in vivo and in vitro efficacy of asparagusic acid against E. multilocularis. Morphological observations, scanning electron microscopy, ROS assays, mitochondrial membrane potential assays, and Western blot were used to evaluate the in vitro effects of asparagusic acid on protoscoleces. The effects of asparagusic acid on vesicles were assessed via PGI release, γ-GGT release, and transmission electron microscopy observations. CellTiter-Glo assays, Caspase3 activity assays, flow cytometry, and Western blot were used for an evaluation of the effect of asparaginic acid on the proliferation and apoptosis of germinal cells. The in vivo efficacy of asparagusic acid was evaluated in a murine AE model. Asparagusic acid exhibited a pronounced killing effect on the protoscoleces post-treatment. Following an intervention with asparagusic acid, there was an increase in ROS levels and a decline in mitochondrial membrane potential in the protoscolex. Moreover, asparagusic acid treatment resulted in the upregulation of PGI and γ-GGT release in metacestode vesicles, concomitant with the inhibition of germinal cell viability. Furthermore, asparagusic acid led to an enhanced relative expression of Caspase3 in the culture supernatant of both the protoscoleces and germinal cells, accompanied by an increase in the proportion of apoptotic germinal cells. Notably, asparagusic acid induced an augmentation in Bax and Caspase3 protein expression while reducing Bcl2 protein expression in both the protoscoleces and germinal cells. In vitro cytotoxicity assessments demonstrated the low toxicity of asparagusic acid towards normal human hepatocytes and HFF cells. Additionally, in vivo experiments revealed that asparagusic acid administration at doses of 10 mg/kg and 40 mg/kg significantly reduced metacestode wet weight. A histopathological analysis displayed the disruption of the germinal layer structure within lesions post-asparagusic acid treatment, alongside the preservation of laminated layer structures. Transmission electron microscopy further revealed mitochondrial swelling and heightened cell necrosis subsequent to the asparagusic acid treatment. Furthermore, asparagusic acid promoted Caspase3 and Bax protein expression while decreasing Bcl2 protein expression in perilesional tissues. Subsequently, it inhibited the expression of Ki67, MMP2, and MMP9 proteins in the perilesional tissues and curbed the activation of the PI3K/Akt signaling pathway within the lesion-host microenvironmental tissues. Asparagusic acid demonstrated a pronounced killing effect on E. multilocularis, suggesting its potential as a promising therapeutic agent for the management of AE.

6.
Front Immunol ; 15: 1358361, 2024.
Article in English | MEDLINE | ID: mdl-38605966

ABSTRACT

Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE.


Subject(s)
Echinococcosis, Hepatic , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Echinococcosis, Hepatic/parasitology , Echinococcus multilocularis , T-Cell Exhaustion
7.
Antimicrob Agents Chemother ; 68(5): e0144923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501660

ABSTRACT

Albendazole (ABZ) is the primary treatment for alveolar echinococcosis (AE); however, its limited solubility impacts oral bioavailability, affecting therapeutic outcomes. In this study, various ABZ-solubilizing formulations, including albendazole crystal dispersion system (ABZ-CSD), albendazole hydrochloride-hydroxypropyl methylcellulose phthalate composite (TABZ-HCl-H), and albendazole hydroxyethyl sulfonate-hydroxypropyl methylcellulose phthalate composite (TABZ-HES-H), were developed and evaluated. Physicochemical properties as well as liver enzyme activity were analyzed and their pharmacodynamics in an anti-secondary hepatic alveolar echinococcosis (HAE) rat model were investigated. The formulations demonstrated improved solubility, exhibiting enhanced inhibitory effects on microcysts in HAE model rats compared to albendazole tablets. However, altered hepatic drug-metabolizing enzymes in HAE model rats led to increased ABZ levels and reduced ABZ-SO production, potentially elevating drug toxicity. These findings emphasize the importance of dose adjustments in patient administration, considering the impact of alveolar echinococcosis on rat hepatic drug metabolism.


Subject(s)
Albendazole , Disease Models, Animal , Echinococcosis, Hepatic , Animals , Albendazole/pharmacology , Albendazole/pharmacokinetics , Albendazole/therapeutic use , Rats , Echinococcosis, Hepatic/drug therapy , Echinococcosis, Hepatic/parasitology , Male , Rats, Sprague-Dawley , Liver/parasitology , Liver/drug effects , Liver/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL