Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(38): 15213-15224, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36083838

ABSTRACT

How to accurately detect and efficiently sweep Cr(VI) from contaminated water has come into focus. Zirconium-based metal-organic frameworks (MOFs) play vital roles in water environmental chemistry due to excellent hydrolysis-resistant stability. However, as photochemical probes and photocatalysts, poor performances in detection sensitivity, selectivity, and photosensitiveness limit sole Zr-MOFs' applications. So, it is urgent to quest valid strategies to break through the dilemmas. Embedding luminous dyes into MOFs has been considered one of the most feasible avenues. Herein, a dual-emissive RhB@Zr-MOF with orange-yellow fluorescence has been assembled by in situ-encapsulating rhodamine B (RhB) into a zirconium-biquinoline-based MOF. Actually, within RhB@Zr-MOF, the aggregation fluorescence quenching (ACQ) effect of RhB molecules was effectively avoided. Notably, RhB@Zr-MOF exhibits a rapid fluorescence quenching response toward Cr(VI) ions with high selectivity, sensitivity, and anti-interference abilities. More interestingly, unlike the most widely reported fluorescence resonance energy transfer (FRET) between MOFs and encapsulated guest modules, photoinduced electron transfer from RhB to Zr-MOF has been confirmed by modeling the ground state and excited states of RhB@Zr-MOF using density functional theory (DFT) and time-dependent DFT (TD-DFT). The effective electron transfer makes RhB@Zr-MOF more sensitive in probing Cr2O72- and CrO42- ions with ultralow detection limit (DL) values of 6.27 and 5.26 ppb, respectively. Prominently, the detection sensitivity based on DL values has been increased about 6 and 9 times, respectively, compared with pristine Zr-MOF. Moreover, rather negative CB and positive VB potentials make RhB@Zr-MOF have excellent photochemical scavenging ability toward Cr(VI) and MO.


Subject(s)
Metal-Organic Frameworks , Zirconium , Chromium , Coloring Agents , Metal-Organic Frameworks/chemistry , Rhodamines , Water/chemistry , Zirconium/chemistry
2.
Inorg Chem ; 60(11): 8143-8153, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34027670

ABSTRACT

Chromium Cr(VI) is frequently used in many fields and has been intensively researched for detection and/or removal from contaminated water. However, the existing approaches are still of low efficiency, high cost, and cumbersome in operation. It is thus highly imperative to hunt for alternative avenues to get out of the predicament. In this work, two bcu topological and highly stable zirconium-metal-organic frameworks (Zr-MOFs) of 1 and 2 have been deliberately prepared, displaying channel-type interior spaces replete with free bipyridine/biquinoline matrices and Zr-O defect sites. Because of their unique intrinsic features of high porosity and photosensitivity, 1 and 2 were deployed as versatile platforms to sense, adsorb, and catalytically reduce Cr(VI) ions. Indeed, the Zr-MOF of 1 performs excellently in fluorescence sensing and adsorption trapping of Cr(VI), with an ultralow detection limit of 0.0176 ppm and a fairly high saturated adsorption capacity of 145.77 mg/g, while 2 is more powerful than 1 in photochemical removal of Cr(VI), exhibiting a remarkable reduction efficiency of 98.05% just within 70 min and still up to 92.21% even after five consecutive photocatalytic cycles. Furthermore, possible photoluminescence, quenching, and reduction mechanisms were also tentatively proposed. This study may open up a new avenue for addressing some unresolved environmental issues, that is, the decontamination of highly toxic Cr(VI) from water.

SELECTION OF CITATIONS
SEARCH DETAIL
...