Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
iScience ; 27(6): 110130, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38952687

ABSTRACT

The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.

2.
Sci Rep ; 14(1): 17011, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043830

ABSTRACT

Rainbow trapping, observed in elastic waves, has attracted considerable scientific interest owing to its potential applications in energy harvesting, buffering, and wavelength-division multiplexing devices. However, previous approaches have often necessitated complex geometric modifications to the scatterer, such as altering dimensions or shifting along diagonals to corners, limiting practical utility. Here, we realize the coupled topological edge states (CTESs) of elastic waves in a two-dimensional (2D) solid phononic crystal (PC) with inversion center changes. Changing the inversion center along the x or y directions by a specific distance can induce the topological phase transition. The topological edge states (TESs) arise at the interface by combining PCs with different topologies positioned adjacent to each other. Furthermore, it is demonstrated that TES exhibits topological robustness against defects. By introducing a gradient into the PC structure by altering the geometrical parameters of scatterers along the interface, the topological rainbow trapping of elastic waves is achieved. Finally, the CTES are generated by the interaction between TESs of different interfaces, which can lead to coupled topological rainbow trapping in phononic heterostructures with different displacement parameters along the multiple interface gradient. Our results pave the way for manipulating the symmetric and antisymmetric topological modes of elastic waves in topologically coupled waveguides, which offers potential applications in selective filtering and multiband waveguiding.

3.
World J Diabetes ; 15(2): 275-286, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38464380

ABSTRACT

BACKGROUND: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) plays a crucial role in regulating insulin signaling and glucose metabolism. Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14 (MODY14). Currently, only two mutations [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)] have been identified in association with this disease. Given the limited understanding of MODY14, it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations. AIM: To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain. METHODS: Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study. Whole exome sequencing was performed on the patients as well as their family members. The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis. In addition, the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments. Finally, the impact of these variants on APPL1 protein expression and the insulin pathway were assessed, and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored. RESULTS: A total of five novel mutations were identified, including four missense mutations (Asp632Tyr, Arg633His, Arg532Gln, and Ile642Met) and one intronic mutation (1153-16A>T). Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions. The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster. In addition, multiple alignment of amino acid sequences showed that the Arg532Gln, Asp632Tyr, and Arg633His variants were conserved across different species. Moreover, in in vitro functional experiments, both the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels, indicating their pathogenic nature. Therefore, based on the patient's clinical and family history, combined with the results from bioinformatics analysis and functional experiment, the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were classified as pathogenic mutations. Importantly, all these mutations were located within the phosphotyrosine-binding domain of APPL1, which plays a critical role in the insulin sensitization effect. CONCLUSION: This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.

4.
Ren Fail ; 46(1): 2322685, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38411132

ABSTRACT

BACKGROUND: Plasma volume (PV) calculated from hematocrit and body weight has applications in cardiovascular disease. The current study investigated the validity of the calculated PV for predicting volume overload and its prognostic utility in patients undergoing hemodialysis (HD). PATIENTS AND METHODS: Fifty-four HD patients were prospectively enrolled, and their actual PV (aPV) and relative PV status (PVS) were calculated. Bioelectrical impedance analysis (BIA) with assessment of and total body water (TBW), intracellular water (ICW), extracellular water (ECW), and overhydration (OH) and routine blood examinations were performed before dialysis. A second cohort of 164 HD patients was retrospectively enrolled to evaluate the relationship between the calculated PVS and the outcome, with an endpoint of all-cause mortality. RESULTS: aPV was significantly associated with TBW, ICW, ECW, OH, and ECW/TBW (all p < 0.001), and most strongly with ECW (r = 0.83). aPV predicted the extent of volume overload with an AUC of 0.770 (p < 0.001), but PVS did not (AUC = 0.617, p = 0.091). Median follow-up time was 53 months, during the course of which 60 (36.58%) patients died. Values for PVS (12.94 ± 10.87% vs. 7.45 ± 5.90%, p = 0.024) and time-averaged PVS (12.83 ± 11.20 vs. 6.78 ± 6.22%, p < 0.001) were significantly increased in patients who died relative to those who survived. A value of time-averaged PVS >8.72% was significantly associated with an increased incidence of all-cause mortality (HR = 2.48, p = 0.0023). CONCLUSIONS: aPV was most strongly associated with ECW measured using BIA. HD patients with higher time-averaged PVS had a higher rate of all-cause mortality.


Subject(s)
Body Water , Plasma Volume , Humans , Retrospective Studies , Renal Dialysis/adverse effects , Water , Electric Impedance
5.
J Orthop Translat ; 44: 35-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235367

ABSTRACT

Objective: Osteoarthritis (OA), which involves total joint damage and dysfunction, is a leading cause of disability worldwide. However, its exact pathogenesis remains unclear. Here, we identified TCF12 as an important regulator of the progression of OA. Methods: qRT-PCR, immunoblotting and immunohistochemistry (IHC) were used to detect the expression level of TCF12. The interaction of TCF12 with its downstream factor CXCR4 was assessed by Western blotting, immunofluorescence, qRT-PCR and luciferase assays. A mouse model was generated to examine the functions and mechanism of TCF12 in vivo. Result: TCF12 expression was upregulated in chondrocytes stimulated with IL-1ß and osteoarthritic chondrocytes. TCF12 upregulates the expression of CXCR4 and leads to dysfunction of the TGF-ß signaling pathway. Furthermore, knockdown of TCF12 alleviated cartilage damage in a mouse model generated by destabilization of the medial meniscus (DMM). Conclusion: TCF12 aggravates the progression of OA by targeting CXCR4 and then activating the TGF-ß signaling pathway, suggesting that TCF12 may be a new target for the treatment of OA. The translational potential of this article: Transcription Factor 12(TCF12), is known to regulate cell development and differentiation, It has been widely studied in various organs and diseases, but its role in OA remains unclear. Here, we identified Transcription Factor 12(TCF12) as an important regulator mediating chondrocyte senescence and cartilage extracellular matrix degradation indicating its role in OA. We found that TCF12 expression was upregulated both locally and systemically as OA advanced in patients with OA, and in mice after DMM surgery to induce OA. TCF12 expression caused striking progressive articular cartilage damage, synovial hyperplasia in OA mice, and remarkably, it was relieved by intra-articular administration of mutant mouse TCF12 lentiviral vector (shTCF12). Furthermore, TCF12 upregulated the expression of CXCR4, leading to exacerbation of experimental OA partially through activation of TGF-ß signaling in chondrocytes. TCF12 expression was upregulated in chondrocytes treated with IL-1ß and osteoarthritic chondrocytes. Our findings established an essential role of TCF12 in chondrocyte senescence and cartilage extracellular matrix degradation during OA, and identified intra-articular injection of TCF12 as a potential therapeutic strategy for OA prevention and treatment.

6.
Nefrología (Madrid) ; 43(2): 204-212, mar.-abr. 2023. graf, tab
Article in English | IBECS | ID: ibc-218129

ABSTRACT

Background: Nuclear receptor binding protein 1 (NRBP1) and ATP-binding cassette subfamily G member 2 (ABCG2) was the gout risk gene and high-capacity urate exporter respectively. However, the relationship between NRBP1 and ABCG2 and the underlying molecular mechanism contributing to these associations are unknown. Methods: Firstly, the efficiency of the overexpression and knockdown of NRBP1 was confirmed by western blot. Next, the effect of NRBP1 overexpression and knockdown on the expression of ABCG2, organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) was detected by qRT-PCR and western blot. At the same time, the cellular location of ABCG2 and its expression after NRBP1 overexpression and knockdown was tested by immunofluorescence (IF) staining. Then, the mechanism of NRBP1 modulates ABCG2 expression was evaluated by western blot with or without the β-catenin inhibitor (21H7). Results: The lentivirus system was used to generate stable NRBP1 overexpression, while the plasmids carrying a NRBP1 siRNA was generated to knockdown NRBP1 expression in HK-2 cells. Meanwhile, the overexpression of NRBP1 significantly decreased the mRNAs and proteins expression of GLUT9 and URAT1, while the knockdown of NRBP1 increased the mRNAs and proteins expression of ABCG2 significantly. In addition, the NRBP1 modulates the expression of ABCG2 was by ctivating the Wnt/β-catenin pathway in HK-2 cells according to the IF and western blot results. Conclusion: Taken together, our study demonstrated that NRBP1 inhibition played an essential role in attenuating hyperuricemia and gout by upregulation of ABCG2 via Wnt/β-catenin signaling pathway in HK-2 cells. (AU)


Antecedentes: La proteína de unión al receptor nuclear 1 (NRBP1) y el miembro G de la subclase ATP binding Box 2 (ABCG2) son los genes de riesgo de gota y los genes de salida de urato de alto rendimiento, respectivamente. Sin embargo, se desconoce la relación entre NRBP1 y ABCG2, y los posibles mecanismos moleculares que conducen a estas asociaciones. Métodos: En primer lugar, la sobreexpresión y el knockout de NRBP1 fueron confirmados por Western-blot. Los efectos de la sobreexpresión y knockout de NRBP1 en la expresión de ABCG2, transportador de aniones orgánicos 1 (OAT1), transportador de glucosa 9 (GLUT9) y transportador de ácido úrico 1 (URAT1) fueron detectados por qRT-PCR y Western-blot. Mientras tanto, la localización y expresión de ABCG2 después de la sobreexpresión y knockout de NRBP1 fueron detectadas por inmunofluorescencia (IF). Luego, el efecto regulador de NRBP1 sobre la expresión de ABCG2 fue estudiado por Western-blot y comparado con el inhibidor de la β-catenina (21H7). Resultados: El sistema lentiviral indujo una sobreexpresión estable de NRBP1, mientras que el plásmido portador de SiRNA NRBP1 inhibió la expresión de NRBP1 en las células HK-2. Mientras tanto, la sobreexpresión de NRBP1 redujo significativamente la expresión de ARNm y proteínas de GLUT9 y URAT1, mientras que el knockout de NRBP1 aumentó significativamente la expresión de ARNm y proteínas de ABCG2. Además, de acuerdo con los resultados de IF y Western-blot, NRBP1 regula la expresión de ABCG2 activando la vía Wnt/β-catenina en las células HK-2. Conclusión: La inhibición del NRBP1 aumenta la regulación de ABCG2 a través de la vía de señalización Wnt/β-catenina, que desempeña un papel importante en la reducción de la hiperuricemia y la gota. (AU)


Subject(s)
Humans , Uric Acid , Nuclear Receptor Interacting Protein 1 , ATP Binding Cassette Transporter, Subfamily G, Member 5 , China , Gout , beta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL