Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Theranostics ; 14(11): 4411-4437, 2024.
Article in English | MEDLINE | ID: mdl-39113804

ABSTRACT

In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.


Subject(s)
Nanoparticles , Nucleic Acids , Sepsis , Sepsis/drug therapy , Sepsis/therapy , Humans , Nucleic Acids/therapeutic use , Nucleic Acids/administration & dosage , Animals , Nanoparticles/chemistry , Genetic Therapy/methods , Multiple Organ Failure/therapy , Multiple Organ Failure/drug therapy , Gene Transfer Techniques
2.
Environ Res ; 261: 119757, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39128665

ABSTRACT

Furanoids are a class of contaminants prevalent in both airborne and occupational environments, with potential health implications through inhalation, oral ingestion, and skin penetration. Given their diminutive molecular size, there is a presumption that furanoids can readily permeate the skin. To systematically explore this presumption, we investigated the skin absorption and toxicity of a series of furans (furfuryl alcohol, furfuryl acetate, furfural, methyl 2-furoate, and 5-methylfurfural) using in silico, in vitro, and in vivo models. The in vitro permeation test (IVPT) from neat and aqueous suspension (5 mM) of furans demonstrated a facile absorption through pig and nude mouse skins. The lipophilicity of furans significantly influenced skin deposition, with higher lipophilicity displaying greater deposition. However, an opposing trend emerged in the receptor compartment accumulation. In barrier-defective skin simulating atopic dermatitis (AD) and psoriasis, enhanced deposition occurred with more hydrophilic furans but not with the more lipophilic ones. In the cell-based study, furanoids induced the proliferation of keratinocytes and skin fibroblasts except for the compounds with the aldehyde group (furfural and 5-methylfurfural). Both furfuryl acetate and 5-methylfurfural activated keratinocytes via the overexpression of COX-2 and PGE2 by 1.5‒2-fold. This stimulation involved the mitogen-activated protein kinase (MAPK) signaling pathway. For the in vivo mouse skin treatment, we selected furfuryl acetate (hydrophilic) and 5-methylfurfural (lipophilic). Both furans showed different patterns of skin lesions, where repeated application of furfuryl acetate caused epidermal hyperplasia and scaling, while 5-methylfurfural predominantly evoked skin inflammation and barrier disintegration. Toxicokinetics analysis revealed a higher plasma concentration of topically applied furfuryl acetate than that of the 5-methylfurfural (5.04 versus 2.34 nmol/ml), resulting in the mild injury of furfuryl acetate-treated peripheral organs. Conversely, no notable adverse effects on organs were observed for the 5-methylfurfural. This study established the relationship between cutaneous absorption and the toxicity of furans following skin exposure.

3.
Orthop Surg ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187991

ABSTRACT

BACKGROUND: Traditionally known for bone regeneration, the Ilizarov technique's effectiveness in nerve reconstruction, particularly for extensive nerve damage, has yet to be widely recognized. CASE PRESENTATION: This report presents a case study and proposes the innovative use of the Ilizarov technique for reconstructing extended nerve defects. In this study, we reviewed a 43-year-old male diagnosed with an open fracture of the right tibia combined with soft tissue injury resulting in a mangled injury in which a large part of his right tibial bone and nerve were lost. The patient was cured and the sensorimotor function was recovered after distraction osteogenesis by the Ilizarov technique, which is a unique application of this technique to repair a substantial long nerve defect, a rare occurrence in medical literature. It highlights the method of nerve lengthening, which is achieved by attaching the nerve stump to the bone stump. This approach allows for significant nerve regeneration and ensures a stable progression of the nerve, as the bone stump acts as a carrier, overcoming the challenges of direct nerve lengthening. CONCLUSIONS: The adaptability and effectiveness of the Ilizarov technique in a new area suggests the need to reconsider traditional approaches to complex nerve reconstruction. Placing this case within the context of current medical knowledge underscores the potential of this technique to revolutionize the treatment of extended nerve defects, offering hope for improved outcomes in challenging scenarios.

4.
Int J Gen Med ; 17: 3181-3192, 2024.
Article in English | MEDLINE | ID: mdl-39049830

ABSTRACT

Objective: Analyze risk factors for cardiac surgery-associated acute kidney injury (CSA-AKI) in adults and establish a nomogram model for CSA-AKI based on plasma soluble urokinase-type plasminogen activator receptor (suPAR) and clinical characteristics. Methods: In a study of 170 patients undergoing cardiac surgery with cardiopulmonary bypass, enzyme-linked immunosorbent assay (ELISA) measured plasma suPAR levels. Multivariable logistic regression analysis identified risk factors associated with CSA-AKI. Subsequently, the CSA-AKI nomogram model was developed using R software. Predictive performance was evaluated using a receiver operating characteristic (ROC) curve and the area under the curve (AUC). Internal validation was performed through the Bootstrap method with 1000 repeated samples. Additionally, decision curve analysis (DCA) assessed the clinical applicability of the model. Results: Multivariable logistic regression analysis revealed that being male, age ≥ 50 years, operation time ≥ 290 minutes, postoperative plasma suPAR at 2 hours, and preoperative left ventricular ejection fraction (LVEF) were independent risk factors for CSA-AKI. Employing these variables as predictive factors, a nomogram model was constructed, an ROC curve was generated, and the AUC was computed as 0.817 (95% CI 0.726-0.907). The calibration curve indicated the accuracy of the model, and the results of DCA demonstrated that the model could benefit the majority of patients. Conclusion: Being male, age ≥ 50 years, operation time ≥ 290 minutes, low preoperative LVEF, and elevated plasma suPAR at 2 hours are independent risk factors for CSA-AKI. The nomogram model established based on these risk factors has high accuracy and clinical value, serving as a predictive tool for assessing the risk of CSA-AKI.

5.
BMC Pulm Med ; 24(1): 354, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039507

ABSTRACT

BACKGROUND: miR-223-3p has been demonstrated as a Pseudomonas aeruginosa colonization-related miRNA in bronchiectasis (BE), but its clinical value in BE has not been revealed, which is of great significance for the clinical diagnosis and monitoring of BE. This study aimed to identify a reliable biomarker for screening BE and predicting patients' outcomes. METHODS: The serum expression of miR-223-3p was compared between healthy individuals (n = 101) and BE patients (n = 133) and evaluated its potential in distinguishing BE patients. The severity of BE patients was estimated by BSI and FACED score, and the correlation of miR-223-3p with inflammation and severity of BE patients was evaluated by Pearson correlation analysis. BE patients were followed up for 3 years, and the predictive value of miR-223-3p in prognosis was assessed by logistic regression analysis. RESULTS: Significant upregulation of miR-223-3p was observed in BE patients, which significantly distinguished BE patients and showed positive correlations with C-reactive protein (CRP), procalcitonin (PCT), interleukin 6 (IL-6), and neutrophil-to-lymphocyte ratio (NLR) of BE patients. Additionally, miR-223-3p was also positively correlated with BSI and FACED scores, indicating its correlation with inflammation and severity of BE. BE patients with adverse prognoses showed a higher serum miR-223-3p level, which was identified as an adverse prognostic factor and discriminated patients with different prognoses. CONCLUSION: Increasing serum miR-223-3p can be considered a biomarker for the onset, severity, and prognosis of BE.


Subject(s)
Biomarkers , Bronchiectasis , MicroRNAs , Severity of Illness Index , Humans , Bronchiectasis/blood , Bronchiectasis/diagnosis , MicroRNAs/blood , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Biomarkers/blood , Adult , Aged , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Procalcitonin/blood , Case-Control Studies , Interleukin-6/blood
6.
Chaos ; 34(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39042505

ABSTRACT

Electromagnetic radiation (EMR) affects the dynamical behavior of the nervous system, and appropriate EMR helps to study the dynamic mechanism of the nervous system. This paper uses a sophisticated four-dimensional Hopfield neural network (HNN) model augmented with one or more memristors to simulate the effects of EMR. We focus on the chaotic dynamics of HNN under the influence of EMR. Complex dynamical behaviors are found and transient chaotic phenomena have the same initial value sensitivity, showing how transient chaos is affected by EMR. Multiperiodic phenomena induced by quasi-periodic alternations are found in the dual EMR, as well as the suppression properties of the dual EMR for system chaos. This implies that the dynamical behavior of the HNN system can be controlled by varying the amount of EMR or the number of affected neurons in the HNN. Finally, a strong validation of our proposed model is provided by Multisim and Field Programmable Gate Array(FPGA) hardware.

7.
Support Care Cancer ; 32(6): 377, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780815

ABSTRACT

PURPOSE: To explore symptom clusters and interrelationships using a network analysis approach among symptoms in patients with lung tumors who underwent computed tomography (CT)-guided microwave ablation (MWA). METHODS: A longitudinal study was conducted, and 196 lung tumor patients undergoing MWA were recruited and were measured at 24 h, 48 h, and 72 h after MWA. The Chinese version of the MD Anderson Symptom Inventory and the Revised Lung Cancer Module were used to evaluate symptoms. Network analyses were performed to explore the symptom clusters and interrelationships among symptoms. RESULTS: Four stable symptom communities were identified within the networks. Distress, weight loss, and chest tightness were the central symptoms. Distress, and weight loss were also the most key bridge symptoms, followed by cough. Three symptom networks were temporally stable in terms of symptom centrality, global connectivity, and network structure. CONCLUSION: Our findings identified the central symptoms, bridge symptoms, and the stability of symptom networks of patients with lung tumors after MWA. These network results will have important implications for future targeted symptom management intervention development. Future research should focus on developing precise interventions for targeting central symptoms and bridge symptoms to promote patients' health.


Subject(s)
Lung Neoplasms , Microwaves , Tomography, X-Ray Computed , Humans , Lung Neoplasms/surgery , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Longitudinal Studies , Microwaves/therapeutic use , Aged , Adult , Ablation Techniques/methods
8.
Front Neurosci ; 18: 1380886, 2024.
Article in English | MEDLINE | ID: mdl-38716252

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder that significantly affects children and adults worldwide, characterized by persistent inattention, hyperactivity, and impulsivity. Current research in this field faces challenges, particularly in accurate diagnosis and effective treatment strategies. The analysis of motor information, enriched by artificial intelligence methodologies, plays a vital role in deepening our understanding and improving the management of ADHD. The integration of AI techniques, such as machine learning and data analysis, into the study of ADHD-related motor behaviors, allows for a more nuanced understanding of the disorder. This approach facilitates the identification of patterns and anomalies in motor activity that are often characteristic of ADHD, thereby contributing to more precise diagnostics and tailored treatment strategies. Our approach focuses on utilizing AI techniques to deeply analyze patients' motor information and cognitive processes, aiming to improve ADHD diagnosis and treatment strategies. On the ADHD dataset, the model significantly improved accuracy to 98.21% and recall to 93.86%, especially excelling in EEG data processing with accuracy and recall rates of 96.62 and 95.21%, respectively, demonstrating precise capturing of ADHD characteristic behaviors and physiological responses. These results not only reveal the great potential of our model in improving ADHD diagnostic accuracy and developing personalized treatment plans, but also open up new research perspectives for understanding the complex neurological logic of ADHD. In addition, our study not only suggests innovative perspectives and approaches for ADHD treatment, but also provides a solid foundation for future research exploring similar complex neurological disorders, providing valuable data and insights. This is scientifically important for improving treatment outcomes and patients' quality of life, and points the way for future-oriented medical research and clinical practice.

9.
Drug Des Devel Ther ; 18: 1277-1296, 2024.
Article in English | MEDLINE | ID: mdl-38681207

ABSTRACT

Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.


Subject(s)
Genetic Therapy , Psoriasis , Animals , Humans , Disease Models, Animal , Psoriasis/therapy , Psoriasis/genetics , Psoriasis/immunology , RNA/genetics
10.
Int J Biol Macromol ; 268(Pt 1): 131673, 2024 May.
Article in English | MEDLINE | ID: mdl-38642681

ABSTRACT

Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Gold , Methicillin-Resistant Staphylococcus aureus , Nanotubes , Photothermal Therapy , Chitosan/chemistry , Chitosan/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Gold/chemistry , Gold/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanotubes/chemistry , Animals , Photothermal Therapy/methods , Mice , Plankton/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/therapy , Nanocomposites/chemistry , Microbial Sensitivity Tests
11.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609998

ABSTRACT

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Subject(s)
COVID-19 , Nanoparticles , Humans , Angiotensin-Converting Enzyme 2 , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2
12.
Article in English | MEDLINE | ID: mdl-38596203

ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD), an incurable chronic respiratory disease, has become a major public health problem. The relationship between the composition of intestinal microbiota and the important clinical factors affecting COPD remains unclear. This study aimed to identify specific intestinal microbiota with high clinical diagnostic value for COPD. Methods: The fecal microbiota of patients with COPD and healthy individuals were analyzed by 16S rDNA sequencing. Random forest classification was performed to analyze the different intestinal microbiota. Spearman correlation was conducted to analyze the correlation between different intestinal microbiota and clinical characteristics. A microbiota-disease network diagram was constructed using the gut MDisorder database to identify the possible pathogenesis of intestinal microorganisms affecting COPD, screen for potential treatment, and guide future research. Results: No significant difference in biodiversity was shown between the two groups but significant differences in microbial community structure. Fifteen genera of bacteria with large abundance differences were identified, including Bacteroides, Prevotella, Lachnospira, and Parabacteroides. Among them, the relative abundance of Lachnospira and Coprococcus was negatively related to the smoking index and positively related to lung function results. By contrast, the relative abundance of Parabacteroides was positively correlated with the smoking index and negatively correlated with lung function findings. Random forest classification showed that Lachnospira was the genus most capable of distinguishing between patients with COPD and healthy individuals suggesting it may be a potential biomarker of COPD. A Lachnospira disease network diagram suggested that Lachnospira decreased in some diseases, such as asthma, diabetes mellitus, and coronavirus disease 2019 (COVID-19), and increased in other diseases, such as irritable bowel syndrome, hypertension, and bovine lichen. Conclusion: The dominant intestinal microbiota with significant differences is related to the clinical characteristics of COPD, and the Lachnospira has the potential value to identify COPD.


Subject(s)
Asthma , Gastrointestinal Microbiome , Microbiota , Pulmonary Disease, Chronic Obstructive , Humans , Animals , Cattle , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/microbiology , Feces/microbiology
13.
Sci Rep ; 14(1): 8435, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600253

ABSTRACT

Ignition electrodes have an immense impact on the accurate measurement of the flame propagation spherical radius. In this study, a flame-radius calculation method is designed. The method is able to eliminate effects due to the ignition electrodes. The adaptability and optimization effects of the proposed method are analyzed. The results show that the ratio of the angle is affected by the ignition electrodes under the Han II method. There are three obvious divisions include a high-value area, a sharp-variation area, and a mild-variation area. The ratio of the angle affected by the ignition electrodes is only applicable to the mild-variation region when the flame presents respective convex and concave distributions. For these distributions, the increment rate of the mean radius is 0.4-0.85% and 0.42-3.19%. The reduced rate of the standard deviation of the radius extraction value is 11.91-22.1% and 5.13-17.99%, and the reduced rate of the radius extraction value range is 20.32-39.51% and 0.32-8.09%.

14.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513075

ABSTRACT

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

15.
Support Care Cancer ; 32(3): 207, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436749

ABSTRACT

PURPOSE: Children with leukemia may experience a range of chemotherapy-related symptoms. Identifying subgroups and their distinct characteristics of symptoms may improve symptom management. We aimed to identify subgroups and their distinct characteristics of chemotherapy-related symptoms in children with leukemia. METHODS: A cross-sectional survey was conducted among 500 children with leukemia, who completed questionnaires that assessed their demographic and clinical characteristics, as well as the Memorial Symptom Assessment Scale. Latent profile analysis was conducted to identify subgroups of symptoms. Additionally, multiple regression analysis and network analysis were utilized to reveal the characteristics of each subgroup. RESULTS: Four subgroups were identified: "Profile 1: low symptom burden subgroup" (26.2%), "Profile 2: moderate symptom burden subgroup in transitional period" (14.8%), "Profile 3: moderate psychological symptom burden subgroup" (35.6%), and "Profile 4: high symptom burden subgroup" (23.4%). Multiple logistic regression analysis indicated that lower primary caregiver's education level, lower family monthly income, self-paid medical expenses, induction remission period, and consolidation enhancement period were associated with more severe symptoms of subgroups. Network analysis further revealed that nausea was the core symptom in Profiles 1 and 2, while the core symptom in Profile 3 was "I don't look like myself." Additionally, worrying was the core symptom in Profile 4. CONCLUSION: There exists heterogeneity in chemotherapy-related symptoms. Four subgroups and their corresponding characteristics of children with varying symptom severity were identified. Identifying these subgroups will facilitate personalized care, maximize intervention effectiveness, and alleviate symptom burden.


Subject(s)
Leukemia , Child , Humans , Cross-Sectional Studies , Leukemia/drug therapy , Educational Status , Income , Nausea
16.
World J Gastrointest Surg ; 16(1): 239-247, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328322

ABSTRACT

BACKGROUND: At present, there is no unified and effective treatment for extreme corrosive esophageal stenosis (CES) with esophagotracheal fistula (ETF). This case had extreme and severe esophageal stenosis (ES) and ETF after ingesting an enzyme-based chemical detergent, resulting in a serious pulmonary infection and severe malnutrition. Upper gastrointestinal imaging showed that he had an ETF, and endoscopy showed that he had extreme and severe esophageal stricture. This case was complex and difficult to treat. According to the domestic and foreign literature, there is no universal treatment that is low-risk. CASE SUMMARY: A patient came to our hospital with extreme ES, an ETF, and severe malnutrition complicated with pulmonary tuberculosis 1 mo after the consumption of an enzyme-based detergent. The ES was serious, and the endoscope was unable to pass through the esophagus. We treated him by endoscopic incision method (EIM), esophageal stent placement (ESP), and endoscopic balloon dilation (EBD) by using the bronchoscope and gastroscope. This treatment not only closed the ETF, but also expanded the esophagus, with minimal trauma, greatly reducing the pain of the patient. According to the literature, there are no similar reported cases. CONCLUSION: We report, for the first time, a patient with extreme CES complicated with ETF, where the endoscope could not be passed through his esophagus but he could be examined by bronchoscopy and treated by EIM, ESP, and EBD.

17.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38317220

ABSTRACT

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Subject(s)
Adipogenesis , Linoleic Acids, Conjugated , Tocopherols , Male , Humans , Rats , Animals , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism , alpha-Tocopherol/metabolism , alpha-Tocopherol/pharmacology , Tissue Distribution , Obesity/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Liver/metabolism
18.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358770

ABSTRACT

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Subject(s)
Alkaloids , Flavanones , Sophora , Mice , Animals , Flavonoids/chemistry , Sophora flavescens , Sophora/chemistry , Flavanones/pharmacology , Flavanones/chemistry , Prenylation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines , Chemokines
19.
Int Med Case Rep J ; 17: 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38196944

ABSTRACT

Introduction: We report a fatal case of massive airway bleeding caused by pulmonary strongyloidiasis in a patient with a transplanted kidney. Case Presentation: A 47-year-old male, regularly taking immunosuppressants post-kidney transplant, visited our hospital with symptoms of abdominal bloating, nausea, and emesis persisting for three days. After hospitalization, he developed a cough, hemoptysis, and respiratory failure. Sputum analysis confirmed an infestation with Strongyloides stercoralis. Despite receiving albendazole therapy and bronchoscopic management for bronchial hemorrhage, the patient ultimately died due to acute respiratory and circulatory collapse triggered by severe airway bleeding. Conclusion: Patients undergoing immunosuppressive therapy following kidney transplantation are at increased risk for disseminated strongyloidiasis. Consequently, infectious disease screening prior to transplantation, along with essential preventive pharmacotherapy, is of paramount importance.

20.
Int J Nanomedicine ; 19: 231-245, 2024.
Article in English | MEDLINE | ID: mdl-38223881

ABSTRACT

Background: As the first line of immune defense and the largest organ of body, skin is vulnerable to damage caused by surgery, burns, collisions and other factors. Wound healing in the skin is a long and complex physiological process that is influenced by a number of different factors. Proper wound care can greatly improve the speed of wound healing and reduce the generation of scars. However, traditional wound dressings (bandages, gauze, etc.) often used in clinical practice have a single function, lack of active ingredients and are limited in use. Hydrogels with three-dimensional network structure are a potential biomedical material because of their physical and chemical environment similar to extracellular matrix. In particular, hydrogel dressings with low price, good biocompatibility, degradability, antibacterial and angiogenic activity are favored by the public. Methods: Here, a carboxymethyl chitosan-based hydrogel dressing (CMCS-TA/Cu2+) reinforced by copper ion crosslinked tannic acid (TA/Cu2+) nanoparticles was developed. This study investigated the physical and chemical characteristics, cytotoxicity, and angiogenesis of TA/Cu2+ nanoparticles and CMCS-TA/Cu2+ hydrogels. Furthermore, a full-thickness skin defect wound model was employed to assess the in vivo wound healing capacity of hydrogel dressings. Results: The introduction of TA/Cu2+ nanoparticles not only could increase the mechanical properties of the hydrogel but also continuously releases copper ions to promote cell migration (the cell migration could reach 92% at 48 h) and tubule formation, remove free radicals and promote wound healing (repair rate could reach 90% at 9 days). Conclusion: Experiments have proved that CMCS-TA/Cu2+ hydrogel has good cytocompatibility, antioxidant and wound healing ability, providing an advantageous solution for skin repair.


Subject(s)
Chitosan , Nanoparticles , Polyphenols , Humans , Hydrogels/pharmacology , Antioxidants/pharmacology , Copper/pharmacology , Bandages , Cicatrix , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL