Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 11(1): 20634, 2021 10 19.
Article En | MEDLINE | ID: mdl-34667233

The extraction of brain tumor tissues in 3D Brain Magnetic Resonance Imaging (MRI) plays an important role in diagnosis before the gamma knife radiosurgery (GKRS). In this article, the post-contrast T1 whole-brain MRI images had been collected by Taipei Veterans General Hospital (TVGH) and stored in DICOM format (dated from 1999 to 2018). The proposed method starts with the active contour model to get the region of interest (ROI) automatically and enhance the image contrast. The segmentation models are trained by MRI images with tumors to avoid imbalanced data problem under model construction. In order to achieve this objective, a two-step ensemble approach is used to establish such diagnosis, first, classify whether there is any tumor in the image, and second, segment the intracranial metastatic tumors by ensemble neural networks based on 2D U-Net architecture. The ensemble for classification and segmentation simultaneously also improves segmentation accuracy. The result of classification achieves a F1-measure of [Formula: see text], while the result of segmentation achieves an IoU of [Formula: see text] and a DICE score of [Formula: see text]. Significantly reduce the time for manual labeling from 30 min to 18 s per patient.


Brain Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Radiosurgery/methods , Brain Neoplasms/surgery , Humans , Magnetic Resonance Imaging/methods , Models, Theoretical , Neural Networks, Computer
2.
J Chin Med Assoc ; 84(10): 956-962, 2021 10 01.
Article En | MEDLINE | ID: mdl-34613943

BACKGROUND: This study aimed to compare the prediction performance of two-dimensional (2D) and three-dimensional (3D) semantic segmentation models for intracranial metastatic tumors with a volume ≥ 0.3 mL. METHODS: We used postcontrast T1 whole-brain magnetic resonance (MR), which was collected from Taipei Veterans General Hospital (TVGH). Also, the study was approved by the institutional review board (IRB) of TVGH. The 2D image segmentation model does not fully use the spatial information between neighboring slices, whereas the 3D segmentation model does. We treated the U-Net as the basic model for 2D and 3D architectures. RESULTS: For the prediction of intracranial metastatic tumors, the area under the curve (AUC) of the 3D model was 87.6% and that of the 2D model was 81.5%. CONCLUSION: Building a semantic segmentation model based on 3D deep convolutional neural networks might be crucial to achieve a high detection rate in clinical applications for intracranial metastatic tumors.


Brain Neoplasms/diagnostic imaging , Deep Learning , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Neoplasm Metastasis/diagnostic imaging , Humans
3.
Int J Cardiol ; 316: 272-278, 2020 10 01.
Article En | MEDLINE | ID: mdl-32507394

BACKGROUND: Precise segmentation of the left atrium (LA) in computed tomography (CT) images constitutes a crucial preparatory step for catheter ablation in atrial fibrillation (AF). We aim to apply deep convolutional neural networks (DCNNs) to automate the LA detection/segmentation procedure and create three-dimensional (3D) geometries. METHODS: Five hundred eighteen patients who underwent procedures for circumferential isolation of four pulmonary veins were enrolled. Cardiac CT images (from 97 patients) were used to construct the LA detection and segmentation models. These images were reviewed by the cardiologists such that images containing the LA were identified/segmented as the ground truth for model training. Two DCNNs which incorporated transfer learning with the architectures of ResNet50/U-Net were trained for image-based LA classification/segmentation. The LA geometry created by the deep learning model was correlated to the outcomes of AF ablation. RESULTS: The LA detection model achieved an overall 99.0% prediction accuracy, as well as a sensitivity of 99.3% and a specificity of 98.7%. Moreover, the LA segmentation model achieved an intersection over union of 91.42%. The estimated mean LA volume of all the 518 patients studied herein with the deep learning model was 123.3 ± 40.4 ml. The greatest area under the curve with a LA volume of 139 ml yielded a positive predictive value of 85.5% without detectable AF episodes over a period of one year following ablation. CONCLUSIONS: The deep learning provides an efficient and accurate way for automatic contouring and LA volume calculation based on the construction of the 3D LA geometry.


Atrial Appendage , Atrial Fibrillation , Catheter Ablation , Deep Learning , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Computers , Heart Atria/diagnostic imaging , Heart Atria/surgery , Humans , Tomography, X-Ray Computed
...