Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.058
Filter
1.
Plants (Basel) ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38999588

ABSTRACT

BACKGROUND: DNA methylation can change rapidly to regulate the expression of stress-responsive genes. Previous studies have shown that there are significant differences in the cold resistance of winter rapeseed (Brassica rapa L.) after being domesticated in different selection environments; however, little is known about the epigenetic regulatory mechanisms of its cold resistance formation. METHODS: Four winter rapeseed materials ('CT-2360', 'MXW-1', '2018-FJT', and 'DT-7') domesticated in different environments were selected to analyze the DNA methylation level and pattern changes under low temperature using methylation-sensitive amplified polymorphism technology with 60 primer pairs. RESULTS: A total of 18 pairs of primers with good polymorphism were screened, and 1426 clear bands were amplified, with 594 methylation sites, accounting for 41.65% of the total amplified bands. The total methylation ratios of the four materials were reduced after low-temperature treatment, in which the DNA methylation level of 'CT-2360' was higher than that of the other three materials; the analysis of methylation patterns revealed that the degree of demethylation was higher than that of methylation in 'MXW-1', '2018-FJT', and 'DT-7', which were 22.99%, 19.77%, and 24.35%, respectively, and that the methylation events in 'CT-2360' were predominantly dominant at 22.95%. Fifty-three polymorphic methylated DNA fragments were randomly selected and further analyzed, and twenty-nine of the cloned fragments were homologous to genes with known functions. The candidate genes VQ22 and LOC103871127 verified the existence of different expressive patterns before and after low-temperature treatment. CONCLUSIONS: Our work implies the critical role of DNA methylation in the formation of cold resistance in winter rapeseed. These results provide a comprehensive insight into the adaptation epigenetic regulatory mechanism of Brassica rapa L. to low temperature, and the identified differentially methylated genes can also be used as important genetic resources for the multilateral breeding of winter-resistant varieties.

2.
J Environ Manage ; 365: 121667, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959776

ABSTRACT

Implementing a Carbon Peak Action Plan at the regional level requires comprehensive consideration of the developmental heterogeneity among different provinces, which is an effective pathway for China to realize the goal of carbon peak by 2030. However, there is currently no clear provincial roadmap for carbon peak, and existing studies on carbon peak pathways inadequately address provincial heterogeneity. Therefore, this paper employs the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to decompose assess 8 factors influencing carbon emissions of 30 provinces. According to scenario analysis, the paper explores the differentiated pathways for provincial carbon peaks based on policy expectation indicators (including population, economy, and urbanization rate) and comprises policy control indicators (including the energy structure, energy efficiency, industrial structure, transportation structure, and innovation input). The results indicate that population, per capita GDP, urbanization rate, and innovation input are the primary factors for influencing (negatively) the growth of carbon emissions. In contrast, the optimization and upgrading of the industrial structure, energy intensity, energy structure, and transportation structure have mitigating effects on carbon emissions, especially for the first two factors. The forecasting results reveal that robust regulations of the energy and industry can effectively accelerate carbon peak at a reduced magnitude. If developed at BAU, China cannot achieve carbon peak by 2030, continuing an upward trend. However, by maximizing the adjustment strength of energy and industrial transformation within the scope of provincial capabilities, China could achieve carbon peak as early as 2025, with a peak of 12.069 billion tons. In this scenario, 24 provinces could achieve carbon peak before 2030. Overall, this study suggests the feasibility of differentiated pathway to achieve carbon peaks in China, exploring the carbon peak potential and paths of 30 provinces, and identifying provinces where carbon peak is more challenging. It also provides a reference for the design of carbon peak roadmaps at both provincial and national levels and offers targeted recommendations for the implementation of differentiated policy strategies for the government.

3.
Patient Prefer Adherence ; 18: 1271-1280, 2024.
Article in English | MEDLINE | ID: mdl-38933236

ABSTRACT

Objective: This study aimed to analyse the impact of enterostomal therapist-led visual health education combined with peer education on the postoperative self-nursing ability, quality of life and peristomial complications in patients with a permanent colostomy. Methods: Patients with a permanent colostomy admitted to Second Hospital of Hebei Medical University between March 2021 and March 2023 were selected and divided into the study group (60 patients) and the control group (60 patients). Enterostomal therapist-led visual health education combined with peer education was adopted in the study group, and regular education was adopted in the control group. The clinical effects between the two groups were compared. Results: Repeated measurement analysis of variance showed that the two educational methods had different effects on the quality of life (Ftreatment = 342.734, p < 0.001), self-nursing ability (Ftreatment = 256.321, p < 0.001), adaptability (Ftreatment = 321.734, p < 0.001) of patients with a permanent colostomy. After the 3-month intervention, the differences in all aspects of the quality of life, self-nursing ability and adaptability between the two groups were statistically significant, and the score of the study group was higher than that of the control group (p < 0.05). Compared with the control group, the study group had a lower incidence of the five complications (p < 0.05) and higher nursing satisfaction (Z = -2.968, p < 0.05). Conclusion: Enterostomal therapist-led visual health education combined with peer education can improve the quality of life of patients with a permanent colostomy, improve their positive mood, reduce their negative mood, improve their adaptability to the stoma, reduce complications and improve their daily living conditions. In the future, the clinical application of visual health education and peer education in patients with permanent colostomy should be increased.

4.
Biomedicines ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927521

ABSTRACT

Postprandial glucose levels between 4 and 7.9 h (PPG4-7.9h) correlate with mortality from various diseases, including hypertension, diabetes, cardiovascular disease, and cancer. This study aimed to assess if predicted PPG4-7.9h could diagnose diabetes. Two groups of participants were involved: Group 1 (4420 participants) had actual PPG4-7.9h, while Group 2 (8422 participants) lacked this measure but had all the diabetes diagnostic measures. Group 1 underwent multiple linear regression to predict PPG4-7.9h using 30 predictors, achieving accuracy within 11.1 mg/dL in 80% of the participants. Group 2 had PPG4-7.9h predicted using this model. A receiver operating characteristic curve analysis showed that predicted PPG4-7.9h could diagnose diabetes with an accuracy of 87.3% in Group 2, with a sensitivity of 75.1% and specificity of 84.1% at the optimal cutoff of 102.5 mg/dL. A simulation on 10,000 random samples from Group 2 revealed that 175 participants may be needed to investigate PPG4-7.9h as a diabetes diagnostic marker with a power of at least 80%. In conclusion, predicted PPG4-7.9h appears to be a promising diagnostic indicator for diabetes. Future studies seeking to ascertain its definitive diagnostic value might require a minimum sample size of 175 participants.

5.
Nat Commun ; 15(1): 5155, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886411

ABSTRACT

Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.


Subject(s)
Arginine , Cell Differentiation , Histones , Mutation , Neoplasms , Polycomb Repressive Complex 2 , Histones/metabolism , Histones/genetics , Cell Differentiation/genetics , Arginine/metabolism , Animals , Humans , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Chromatin/metabolism , Epigenesis, Genetic , Mesenchymal Stem Cells/metabolism , Cell Line, Tumor
6.
Acta Pharmacol Sin ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834683

ABSTRACT

Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.

7.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830885

ABSTRACT

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Subject(s)
Disease Progression , Glioma , Heterogeneous-Nuclear Ribonucleoprotein Group C , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Signaling System , RNA, Messenger , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Cell Line, Tumor , MAP Kinase Signaling System/genetics , Mice , RNA Stability/genetics , Mice, Nude , Animals , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis
8.
Medicine (Baltimore) ; 103(23): e38230, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847674

ABSTRACT

The prognosis of acromelanomas (AM) is worse. The objective of this study was to investigate the clinical features of distant metastasis of AM and the factors affecting the survival and prognosis of patients. In this study, a retrospective study was conducted to select 154 AM patients admitted to Nanjing Pukou People's Hospital from January 2018 to April 2021 for clinical research. The clinical characteristics of distant metastasis were statistically analyzed, and the survival curve was drawn with 5-year follow-up outcomes. The median survival time of the patients was calculated, and the clinicopathological features and peripheral blood laboratory indexes of the surviving and dead patients were analyzed. Logistic regression model was used to analyze the risk factors affecting the prognosis of AM patients. In this study, 154 patients with AM were treated, including 88 males and 76 females, aged from 27 to 79 years old, with an average age of (59.3 ±â€…11.7) years old. Among them, 90 cases had distant metastasis. The main metastatic sites were lung (47.78%) and lymph nodes (42.22%). Among them, single site metastasis accounted for 41.11% and multiple site metastasis 58.89%. 89 cases survived and 65 cases died. The survival time was 22 months to 60 months, and the median survival time was 48.0 months. The Breslow thickness, stage at diagnosis, distant metastasis, site of metastasis and ulceration were compared between the survival group and the death group (P < .05). serum lactate dehydrogenase (LDH), neutrophil-to-lymphocyte ratio (NLR) and lymphocyte monocyte ratio (LMR) were compared between the survival group and the death group (P < .05). The results of Logistic regression model showed that LDH ≥ 281 U/L, NLR ≥ 2.96, LMR ≤ 3.57, newly diagnosed stage > stage II, distant metastasis, multiple site metastasis and tumor ulcer were independent risk factors for poor prognosis of AM patients (P < .05). Patients with AM had a higher proportion of distant metastasis, mainly lung and lymph node metastasis. Increased LDH, increased NLR, decreased LMR, higher initial stage, distant metastasis, multiple site metastasis, and combined tumor ulcer were closely related to the poor prognosis of patients after surgery.


Subject(s)
Lung Neoplasms , Humans , Male , Female , Middle Aged , Retrospective Studies , Aged , Adult , Prognosis , Risk Factors , Survival Analysis , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Skin Neoplasms/pathology , Skin Neoplasms/mortality , Lymphatic Metastasis , Neoplasm Metastasis , China/epidemiology
9.
Crit Rev Immunol ; 44(6): 87-98, 2024.
Article in English | MEDLINE | ID: mdl-38848296

ABSTRACT

In this study, network pharmacology combined with biological experimental verification was utilized to screen the targets of isoforskolin (ISOF) and investigate the potential underlying mechanism of ISOF against asthma. Asthma-related targets were screened from the Genecards and DisGeNET databases. SEA and Super-PRED databases were used to obtain the targets of ISOF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to identify enriched regulatory pathways of key targets in ISOF acting on asthma. Then, a protein-protein interaction (PPI) network was constructed via STRING database and hub genes of ISOF against asthma were further screened using molecular docking. Finally, CCK-8, qPCR, and Western blotting were performed to confirm the targets of ISOF in treating asthma. A total of 96 drug potential therapeutic targets from the relevant databases were screened out. KEGG pathway enrichment analysis predicted that the target genes might be involved in the PI3K-Akt pathway. The core targets of ISOF in treating asthma were identified by the PPI network and molecular docking, including MAPK1, mTOR, and NFKB1. Consistently, in vitro experiments showed that ISOF acting on asthma was involved in inflammatory response by reducing the expression of MAPK1, mTOR, and NFKB1. The present study reveals that MAPK1, mTOR, and NFKB1 might be key targets of ISOF in asthma treatment and the anti-asthma effect might be related to the PI3K-AKT signaling pathway.


Subject(s)
Asthma , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Asthma/drug therapy , Asthma/metabolism , Humans , Animals , Mice , Signal Transduction/drug effects , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
10.
Article in English | MEDLINE | ID: mdl-38940288

ABSTRACT

Extreme cold exposure has been widely considered as a cardiac stress and may result in cardiac function decompensation. This study was to examine the risk factors that contribute to changes in cardiovascular indicators of cardiac function following extreme cold exposure and to provide valuable insights into the preservation of cardiac function and the cardiac adaptation that occur in real-world cold environment. Seventy subjects were exposed to cold outside (Mohe, mean temperature -17 to -34°C) for one day, and were monitored by a 24-h ambulatory blood pressure device and underwent echocardiography examination before and after extreme cold exposure. After exposure to extreme cold, 41 subjects exhibited an increase in ejection fraction (EF), while 29 subjects experienced a decrease. Subjects with elevated EF had lower baseline coefficients of variation (CV) in blood pressure compared to those in the EF decrease group. Additionally, the average real variability (ARV) of blood pressure was also significantly lower in the EF increase group. Multivariate regression analysis indicated that both baseline CV and ARV of blood pressure were independent risk factors for EF decrease, and both indicators proved effective for prognostic evaluation. Correlation analysis revealed a correlation between baseline blood pressure CV and ARV, as well as EF variation after exposure to extreme cold environment. Our research clearly indicated that baseline cardiovascular indicators were closely associated with the changes in EF after extreme cold exposure. Furthermore, baseline blood pressure variability could effectively predict alterations in left cardiac functions when individuals were exposed to extreme cold environment.

11.
Anal Bioanal Chem ; 416(18): 4123-4130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782781

ABSTRACT

Detection of specific gene mutations in cell-free DNA (cfDNA) serves as a valuable cancer biomarker and is increasingly being explored as an appealing alternative to tissue-based methods. However, the lack of available reference materials poses challenges in accurately evaluating the performance of different assays. In this study, we present the development of a comprehensive reference material panel for cfDNA detection, encompassing nine hotspot mutations in KRAS/BRAF/EGFR/PIK3CA at three variant allele frequencies (VAFs), ranging from 0.33 to 23.9%. To mimic cfDNA, these reference materials were generated by enzymatically digesting cell-line DNA into approximately 154-bp to 173-bp fragments using a laboratory-developed reaction system. The VAFs for each variation were precisely determined through validated digital PCR assays with high accuracy. Furthermore, the reliability and applicability of this panel were confirmed through two independent NGS assays, yielding concordant results. Collectively, our findings suggest that this novel reference material panel holds great potential for validation, evaluation, and quality control processes associated with liquid biopsy assays.


Subject(s)
Cell-Free Nucleic Acids , Proto-Oncogene Proteins B-raf , Reference Standards , Humans , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/analysis , Cell-Free Nucleic Acids/blood , Proto-Oncogene Proteins B-raf/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Reproducibility of Results , Class I Phosphatidylinositol 3-Kinases/genetics , ErbB Receptors/genetics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Liquid Biopsy/standards , Cell Line, Tumor , Gene Frequency
12.
Biomater Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758027

ABSTRACT

Due to the immunosuppressive tumor microenvironment (TME) and potential systemic toxicity, chemotherapy often fails to elicit satisfactory anti-tumor responses, so how to activate anti-tumor immunity to improve the therapeutic efficacy remains a challenging problem. Photothermal therapy (PTT) serves as a promising approach to activate anti-tumor immunity by inducing the release of tumor neoantigens in situ. In this study, we designed tetrasulfide bonded mesoporous silicon nanoparticles (MSNs) loaded with the traditional drug doxorubicin (DOX) inside and modified their outer layer with polydopamine (DOX/MSN-4S@PDA) for comprehensive anti-tumor studies in vivo and in vitro. The MSN core contains GSH-sensitive tetrasulfide bonds that enhance DOX release while generating hydrogen sulfide (H2S) to improve the therapeutic efficacy of DOX. The polydopamine (PDA) coating confers acid sensitivity and mild photothermal properties upon exposure to near-infrared (NIR) light, while the addition of hyaluronic acid (HA) to the outermost layer enables targeted delivery to CD44-expressing tumor cells, thereby enhancing drug accumulation at the tumor site and reducing toxic side effects. Our studies demonstrate that DOX/MSN@PDA-HA can reverse the immunosuppressive tumor microenvironment in vivo, inducing potent immunogenic cell death (ICD) of tumor cells and improving anti-tumor efficacy. In addition, DOX/MSN@PDA-HA significantly suppresses tumor metastasis to the lung and liver. In summary, DOX/MSN@PDA-HA exhibits controlled drug release, excellent biocompatibility, and remarkable tumor inhibition capabilities through synergistic chemical/photothermal combined therapy.

13.
Int J Biol Macromol ; 271(Pt 2): 132559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821802

ABSTRACT

Massive bleeding resulting from civil and martial accidents can often lead to shock or even death, highlighting the critical need for the development of rapid and efficient hemostatic materials. While various types of hemostatic materials are currently utilized in clinical practice, they often come with limitations such as poor biocompatibility, toxicity, and biodegradability. Polysaccharides, such as alginate (AG), chitosan (CS), cellulose, starch, hyaluronic acid (HA), and dextran, have exhibit excellent biocompatibility and in vivo biodegradability. Their degradation products are non-toxic to surrounding tissues and can be absorbed by the body. As a result, polysaccharides have been extensively utilized in the development of hemostatic materials and have gained significant attention in the field of in vivo hemostasis. This review offers an overview of the different forms, hemostatic mechanisms, and specific applications of polysaccharides. Additionally, it discusses the future opportunities and challenges associated with polysaccharide-based hemostats.


Subject(s)
Biocompatible Materials , Hemostatics , Polysaccharides , Polysaccharides/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostatics/therapeutic use , Humans , Animals , Biocompatible Materials/chemistry , Hemostasis/drug effects , Chitosan/chemistry , Hemorrhage/drug therapy
14.
Chem Biodivers ; : e202302059, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736027

ABSTRACT

This study extracted and purified a polysaccharide from Rehmanniae radix praeparata (RGP) with an average molecular weight. The structural characteristics of RGP and its iron (III) complex, RGP-Fe(III), were examined for their antioxidant properties and potential in treating iron deficiency anemia (IDA). Analysis revealed that RGP comprised Man, Rha, Gal, and Xyl, with a sugar residue skeleton featuring 1→3; 1→2, 3; and 1→2, 3, 4 linkages, among others. RGP-Fe(III) had a molecular weight of 4.39×104 Da. Notably, RGP-Fe(III) exhibited superior antioxidant activity compared to RGP alone. In IDA rat models, treatment with RGP-Fe(III) led to increased weight gain, restoration of key blood parameters including hemoglobin, red blood cells, and mean hemoglobin content, elevated serum iron levels, and decreased total iron-binding capacity. Histological examination revealed no observable toxic effects of RGP-Fe(III) on the liver and spleen. These findings suggest the potential of RGP-Fe(III) as a therapeutic agent for managing IDA and highlight its promising antioxidant properties.

15.
Int J Biol Macromol ; 270(Pt 2): 132440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761899

ABSTRACT

Hemostatic powder is widely utilized in emergency situations to control bleeding due to its ability to work well on wounds with irregular shapes, ease of application, and long-term stability. However, traditional powder often suffers from limited tissue adhesion and insufficient support for blood clot formation, leaving it susceptible to displacement by the flow of blood. This study introduces a hemostatic powder composed of tannic modified mesoporous bioactive glass (TMBG), cationic quaternized chitosan (QCS), and anionic hyaluronic acid modified with catechol group (HADA). The resulting TMBG/QCS/HADA based hemostatic powder (TMQH) rapidly absorbs plasma, concentrating blood coagulation factors. Simultaneously, the water-soluble QCS and HADA interact to form a 3D network structure, which can be strengthened by crosslinking with TMBG. This network effectively captures clustered blood coagulation factors, leading to a strong and adhesive thrombus that resists disruption from blood flow. TMQH exhibits superior efficacy in promoting hemostasis compared to Celox™ both in rat arterial injuries and non-compressible liver puncture wounds. TMQH demonstrates excellent antibacterial activity, cytocompatibility, and blood compatibility. These outstanding superiorities in blood clotting capability, wet tissue adhesion, antibacterial activity, safety for living organisms, ease of application, and long-term stability, make TMQH highly suitable for emergency hemostasis.


Subject(s)
Blood Coagulation , Hemostatics , Powders , Tannins , Animals , Rats , Blood Coagulation/drug effects , Tannins/chemistry , Tannins/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Porosity , Glass/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Gels/chemistry , Humans , Adhesives/chemistry , Adhesives/pharmacology , Male , Rats, Sprague-Dawley , Hemostasis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
16.
ACS Appl Bio Mater ; 7(6): 3758-3765, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38768375

ABSTRACT

Drug-resistant bacteria present a grave threat to human health. Fluorescence imaging-guided photodynamic antibacterial therapy holds enormous potential as an innovative treatment in antibacterial therapy. However, the development of a fluorescent material with good water solubility, large Stokes shift, bacterial identification, and high photodynamic antibacterial efficiency remains challenging. In this study, we successfully synthesized an amphiphilic aggregation-induced emission (AIE) fluorescent probe referred to as NPTPA-QM. This probe possesses the ability to perform live-bacteria fluorescence imaging while also exhibiting antibacterial activity, specifically against Staphylococcus aureus (S. aureus). We demonstrate that NPTPA-QM can eliminate S. aureus at a very low concentration (2 µmol L-1). Moreover, it can effectively promote skin wound healing. Meanwhile, this NPTPA-QM exhibits an excellent imaging ability by simple mixing with S. aureus. In summary, this research presents a straightforward and highly effective method for creating "amphiphilic" AIE fluorescent probes with antibacterial properties. Additionally, it offers a rapid approach for imaging bacteria utilizing red emission.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Fluorescent Dyes , Materials Testing , Microbial Sensitivity Tests , Optical Imaging , Particle Size , Staphylococcus aureus , Staphylococcus aureus/drug effects , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Molecular Structure , Mice , Animals , Humans , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis
17.
Biomacromolecules ; 25(6): 3335-3344, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38717974

ABSTRACT

Hemostatic powder is widely employed for emergency bleeding control due to its ability to conform to irregularly shaped wounds, ease of use, and stable storage. However, current powders exhibit limited tissue adhesion and insufficient support for thrombus formation, making them easily washed away by blood. In this study, a hybrid powder (QAL) was produced by mixing quaternized chitosan (QCS) powder, catechol-modified alginate (Cat-SA) powder, and laponite (Lap) powder. Upon addition of QAL, the blood quickly transformed to a robust and adhesive blood gel. The adhesion strength of the blood gel was up to 31.33 ± 1.56 kPa. When compared with Celox, QAL showed superior performance in promoting hemostasis. Additionally, QAL exhibited effectiveness in eliminating bacteria while also demonstrating outstanding biocompatibility with cells and blood. These favorable properties, including strong coagulation, adhesion to wet tissue, antibacterial activity, biosafety, ease of use, and stable storage, make QAL a promising emergency hemostatic agent.


Subject(s)
Alginates , Blood Coagulation , Chitosan , Hemostatics , Powders , Silicates , Hemostatics/chemistry , Hemostatics/pharmacology , Silicates/chemistry , Animals , Blood Coagulation/drug effects , Powders/chemistry , Chitosan/chemistry , Alginates/chemistry , Alginates/pharmacology , Humans , Mice , Gels/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Hemostasis/drug effects
18.
Article in English | MEDLINE | ID: mdl-38698133

ABSTRACT

Differentiation of Leydig cells plays a key role in male reproductive function. Bone marrow mesenchymal stem cells (BMSCs) have emerged as a potential cell source for generating Leydig-like cells due to their multipotent differentiation capacity and accessibility. This study aimed to investigate the morphological and genetic expression changes of BMSCs during differentiation into Leydig-like cells. Testicular extract liquid, which simulates the microenvironment in vivo, induced the third passage BMSCs differentiated into Leydig-like cells. Changes in cell morphology were observed by microscopy, the formation of lipid droplets of androgen precursor was identified by Oil Red Staining, and the expression of testicular specific genes 3ß-HSD and SF-1 in testicular stromal cells was detected by RT-qPCR. BMSCs isolated from the bone marrow of Sprague-Dawley (SD) rats were cultured for 3 generations and identified as qualified BMSCs in terms of morphology and cell surface markers. After 14 days of induction with testicular tissue lysate, lipid droplets appeared in the cytoplasm of P3 BMSCs by Oil Red O staining. RT-qPCR detection was performed on BMSCs on the 3rd, 7th, 14th, and 21st day after induction. Relative expression levels of 3ß-HSD mRNA significantly increased after 14 days of induction, while the relative expression of SF-1 mRNA increased after 14 days of induction but was not significant. BMSCs can differentiate into testicular interstitial cells with reserve androgen precursor lipid droplets after induction by testicular tissue lysate. The differentiation ability of BMSCs provides the potential to reconstruct the testicular microenvironment and is expected to fundamentally improve testicular function and provide new treatment options for abnormal spermatogenesis diseases.

19.
Plant Dis ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715157

ABSTRACT

Daphniphyllum macropodum Miq., an evergreen arbor, is widely cultivated in southern China for its ornamental and medicinal value (Su et al. 2013). In October 2019, a severe leaf spot was observed on D. macropodum in Jinggangshan National Nature Reserve in Ji'an city, Jiangxi, China (114°06'23″E, 26°32'25″N). The plants were about 15 years old, and the disease incidence was estimated to be 15% (4/26 plants). The disease primarily appeared as small black spots on the leaves. At the late stage, the spots enlarged and coalesced into regular or irregular gray necrotic lesions with dark margins. We collected five samples per plant and total 20 samples were collected to isolated the pathogen strains. The margin of the diseased tissues was cut into 5 mm × 5 mm pieces; surface disinfected with 70% ethanol and 2% NaOCl for 30 s and 60 s, respectively; and rinsed thrice with sterile water. Tissues were placed on potato dextrose agar (PDA) and incubated at 25°C in the dark. Pure cultures were obtained by single-spore isolation method, and the representative isolates, JRM3, JRM6, and JRM8 were used for morphological studies and phylogenetic analyses. The colonies of three isolates grown on PDA were white, cottony, and flocculent, contained undulate edges with dense aerial mycelium on the surface at 25 °C. Conidiomata was black conidial masses on PDA. Conidia were 5-celled, clavate to fusiform, smooth, 19.3 to 24.4 long × 6.1 to 8.6 µm wide (n = 50). The 3 median cells were dark brown to olivaceous, the central cell was darker than the other 2 cells, and the basal and apical cells were hyaline. All conidia developed one basal appendage (3.4 to 8.3 µm long; n = 50), and 2 to 3 apical appendages (18 to 32 µm long; n = 50), filiform. The morphological characteristics of the isolates are comparable with those of the genus Neopestalotiopsis (Maharachchikumbura et al. 2014). The internal transcribed spacer (ITS) regions, ß-tubulin 2 (TUB2) and translation elongation factor 1-alpha (TEF1-α) were amplified from genomic DNA for the three isolates using primers ITS1/ITS4, T1/Bt-2b, EF1-728F/EF-2 (Maharachchikumbura et al. 2014), respectively. The sequences of the isolates were submitted to GenBank (ITS, OQ372202 to OQ372204; TUB2, OQ390129 to OQ390131; TEF1-α, OQ390126 to OQ390128). A maximum likelihood and Bayesian posterior probability analyses using IQtree v. 1.6.8 and Mr. Bayes v. 3.2.6 with the concatenated sequences placed JRM3, JRM6, and JRM8 in the clade of N. clavispora. Based on the multi-locus phylogeny and morphology, three isolates were identified as N. clavispora. To confirm pathogenicity, eight healthy 10-year-old D. macropodum plants growing in the field were chosen, and 4 leaves per plant were wounded with a sterile needle and inoculated with 10 µL conidial suspension per leaf (106 conidia/ml). Eight plants inoculated with sterile water were used as control. All the inoculated leaves were covered with plastic bags to maintian a humidity environment for 2 days. The leaves inoculated with conidial suspension showed similar symptoms to those observed in the field, whereas control leaves were asymptomatic for 10 days. The same fungus were re-isolated from the lesions, whereas no fungus was isolated from control leaves. N. clavispora was determined as the pathogen of a variety of plant diseases, including Kadsura coccinea (Xie et al. 2018), Dendrobium officinale (Cao et al. 2022), Macadamia integrifolia (Santos et al. 2019). However, this is the first report of N. clavispora infecting D. macropodum in China. This work provided crucial information for epidemiologic studies and appropriate control strategies for this newly emerging disease.

20.
Nat Commun ; 15(1): 4105, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750023

ABSTRACT

Molybdenum and its alloys are known for their superior strength among body-centered cubic materials. However, their widespread application is hindered by a significant decrease in ductility at lower temperatures. In this study, we demonstrate the achievement of exceptional ductility in a Mo alloy containing rare-earth La2O3 nanoparticles through rotary-swaging, a rarity in Mo-based materials. Our analysis reveals that the large ductility originates from substantial variations in the electronic density of states, a characteristic intrinsic to rare-earth elements. This characteristic can accelerate the generation of oxygen vacancies, facilitating the amorphization of the oxide-matrix interface. This process promotes vacancy absorption and modification of dislocation configurations. Furthermore, by inducing irregular shapes in the La2O3 nanoparticles through rotary-swaging, incoming dislocations interact with them, creating multiple dislocation sources near the interface. These dislocation sources act as potent initiators at even reduced temperatures, fostering diverse dislocation types and intricate networks, ultimately enhancing dislocation plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...