Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Foods ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37761080

ABSTRACT

The basic physical and chemical qualities, nutrition, aroma components, and sensory evaluation of 17 varieties of table grapes were studied. The quality evaluation system of different table grape varieties was preliminarily determined. Our results show that the soluble solid content in Ruby Seedless was 21.17%, which was higher than that of other varieties. The black varieties Aishenmeigui and Sweet Sapphire had the highest total phenol content. Aishenmeigui had high levels of tannin and vitamin C. In addition, the aroma contents in Meixiangbao, Ruby Seedless, and Shine-Muscat were higher than those in other varieties. Manicure Finger and Ruby Seedless had higher levels of C6 compounds. Moreover, the "Kyoho" series of grape Meixiangbao, Sunmmer Black, Jumeigui, Hutai 8 hao, and Black Beet were high in ester content, while Muscat varieties, including Zaoheibao, Aishenmeigui, Jumeigui, and Shine-Muscat were rich in terpene substances. Ruby Seedless, Shine-Muscat, and Heibaladuo had higher comprehensive scores in sensory evaluation. Hence, the comprehensive quality of Shine-Muscat, Ruby Seedless, and Aishenmeigui was better. These results may serve as references for determining the quality differences between table grape varieties.

2.
Plant Physiol Biochem ; 167: 400-409, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411779

ABSTRACT

Drought stress can significantly affect the growth and yield of grapevine. The application of exogenous strigolactone can relieve the drought symptoms of grapevine; however, little is known about the transcription levels in grapevine under drought stress following exogenous strigolactone application. The mitigative effect of exogenous strigolactone on grapevine leaves under drought stress was studied by transcriptome analysis based on RNA sequencing. On the 10th day of drought stress, the strigolactone treatment group had a higher relative water content and lower electrical conductivity, which significantly alleviated the drought damage. Compared to the drought (D) group, a total of 5955 differentially expressed genes (DEGs) (2966 up-regulated genes and 2989 down-regulated genes) were detected in the exogenous strigolactone (DG) groups. Based on Gene Ontology analysis, the DEGs in the D and DG treatments were enriched in the processes of photosynthesis and organic acid catabolism. Pathway analysis showed that the DEGs in the D and DG treatments were enriched in carbon metabolism, ribosome, starch and sucrose metabolism, flavonoid biosynthesis, and circadian rhythm. Additionally, in the DG group, the antioxidant enzyme genes of CAT1, GSHPX1, GSHPX2, POD42, APX6, and SODCP were up-regulated, two NAC, three WRKY, and four MYB transcription factor genes were down-regulated, and the key gene of strigolactone synthesis D14 was up-regulated, compared with that in the D group. The results provide a new perspective for studying the adaptation of plants to drought stress.


Subject(s)
Droughts , Vitis , Gene Expression Profiling , Heterocyclic Compounds, 3-Ring , Lactones , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Vitis/genetics , Vitis/metabolism
3.
Front Nutr ; 8: 691784, 2021.
Article in English | MEDLINE | ID: mdl-34222310

ABSTRACT

Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), total flavonoid content, and total flavanol content in wine, whereas the addition of MP during storage had the opposite effect. The addition of MP before alcohol fermentation significantly increased the amount of individual anthocyanins and individual phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In addition, the addition of 0.3 g/L MP during storage increased the content of individual phenolic acids and TPC of wine. However, the addition of 0.1 g/L MP during storage significantly reduced the TPC, TAC, TTC, and individual anthocyanin content (except for malvidin-3-glucoside and malvidin-3-acetly-glucoside); meanwhile, the treatment attenuated the color stability and antioxidant capacity of wine. The results demonstrated that the addition of MP before alcohol fermentation could increase the functional components and improve the color stability and antioxidant capacity of wine.

4.
Food Chem X ; 11: 100125, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34278293

ABSTRACT

This study sought to determine the effects of variety on the astringency and chemistry of condensed tannins of spine grapes and wines. Fifteen varieties of red spine grape (Vitis davidii Foex) were used. Condensed tannin content, composition, and wine astringency were determined. The condensed tannin profiles were assessed by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The condensed tannin content highly depended on the variety ranging from 0.30 mg/g to 7.80 mg/g (in skins), from 3.12 mg/g to 8.82 mg/g (in seeds), and from 62.60 mg/L to 225.90 mg/L (in wines). There were significant differences in proportions of certain constitutive subunits (as mole%) and mean degree of polymerization (mDp) among the varieties. Correlation analysis revealed that condensed tannin concentration and composition had a significant effect on the sensory evaluation and quantitative analysis of astringency. A positive correlation between mDp and astringency was also observed. The present results expand knowledge of the characterization of spine grape and wine condensed tannin chemistry and astringency.

5.
Foods ; 9(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019551

ABSTRACT

Native to China, spine grapes (Vitis davidii Foex) are an important wild grape species. Here, the quality characteristics of one white and three red spine grape clones were evaluated via targeted metabolomic and transcription level analysis. Xiangzhenzhu (XZZ) had the highest soluble sugar and organic acid content. Malvidin-3-acetyl-glucoside and cyanidin-3-glucoside were the characteristic anthocyanins in spine grapes, and significant differences in anthocyanin composition between different clones were detected. Anthocyanins were not detected in Baiyu (BY) grapes. The transcript levels of VdGST, VdF3'H, VdOMT, VdLDOX, and VdUFGT were significantly related to the anthocyanin biosynthesis and proportions. A total of 27 kinds of glycosidically bound volatiles (including alcohols, monoterpenes, esters, aldehydes, ketones, and phenolic acid) were identified in spine grapes, with Gaoshan #4 (G4) and BY grapes having the highest concentrations. The VdGT expression levels were closely related to glycosidically bound volatile concentrations. These results increase our understanding of the quality of wild spine grapes and further promote the development and use of wild grape resources.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-235291

ABSTRACT

We report the identification of three structurally diverse compounds - compound 4, GC376, and MAC-5576 - as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.

7.
Plant Physiol Biochem ; 151: 214-222, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32229406

ABSTRACT

NAC [No apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), Cup-shaped cotyledon (CUC)] transcription factors (TFs) play an important role in plant growth and response to various environmental stress. Drought stress is the primary factor limiting the growth and fruit quality of grapevines worldwide. However, the biological function of the NAC family members in grapevine is not clear. In this study, we reported that VvNAC08, a novel NAC transcription factor gene, was expressed after drought, salicylic acid (SA) and abscisic acid (ABA), jasmonic acid (JA) and melatonin (MT) treatments in grapevine. VvNAC08 was expressed in various tissues. The open reading frame (ORF) of VvNAC08 was 792 bp, encoding 263 amino acids. The VvNAC08 protein could bind to NACRS [CGTA/CACG] in yeast. When subjected to drought and dehydration stress, VvNAC08-overexpression (OE) Arabidopsis had a higher survival rate and a lower water loss rate than wild type (WT) plants. Under drought conditions, transgenic Arabidopsis overexpressing VvNAC08 had a lower malondialdehyde (MDA), H2O2 contents, but a higher peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities as well as more proline content. Moreover, the expressions of marker genes, including ABI5, AREB1, COR15A, COR47, P5CS, RD22, and RD29A, were up-regulated in VvNAC08-overexpression lines when subjected to drought treatments. The results suggest that the transgenic Arabidopsis overexpressing VvNAC08 enhances resistance to drought while up-regulating the expressions of ABA- and stress-related genes.


Subject(s)
Arabidopsis/physiology , Droughts , Plant Proteins/genetics , Stress, Physiological , Transcription Factors/genetics , Vitis/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/physiology
8.
Plant Physiol Biochem ; 146: 98-111, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31734522

ABSTRACT

Drought stress is the primary factor limiting the growth and fruit quality of grapevines worldwide. However, the biological function of the NAC [No apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), Cup-shaped cotyledon (CUC)] transcription factor (TF) in grapevine is not clear. In this study, we reported that VvNAC17, a novel NAC transcription factor, was expressed in various tissues following drought, high temperature (45 °C), freezing (4 °C), salicylic acid (SA), and abscisic acid (ABA) treatments in grapevine. The VvNAC17 protein was localized in the nucleus of Arabidopsis thaliana protoplasts and demonstrated transcriptional activation activities at its C-terminus in yeast. The VvNAC17 gene was overexpressed in Arabidopsis thaliana. Under mannitol and salt stress, the germination rates of the VvNAC17-overexpression lines were higher than those of the wild-type plants, as were the root lengths. The VvNAC17-overexpression lines showed greater tolerance to freezing stress along with a higher survival rate. Following ABA treatment, the seed germination rate and the root length of the VvNAC17-overexpression lines were inhibited, and the stomatal opening and stomatal density were reduced. When subjected to drought and dehydration stress, the VvNAC17-overexpression lines showed improved survival and reduced water loss rates in comparison to the wild-type plants. Under drought conditions, the VvNAC17-overexpression lines had lower malondialdehyde and H2O2 contents, but higher peroxidase, superoxide dismutase, and catalase activities as well as higher proline content. Moreover, the expression of marker genes, including ABI5, AREB1, COR15A, COR47, P5CS, RD22, and RD29A, was up-regulated in the VvNAC17-overexpression lines when subjected to ABA and drought treatments. The results suggest that in transgenic Arabidopsis over-expression of VvNAC17 enhances resistance to drought while up-regulating the expression of ABA- and stress-related genes.


Subject(s)
Arabidopsis , Vitis , Abscisic Acid , Droughts , Freezing , Gene Expression Regulation, Plant , Hydrogen Peroxide , Plant Proteins , Plants, Genetically Modified , Salinity , Stress, Physiological , Transcription Factors
9.
Molecules ; 24(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641873

ABSTRACT

The concentrations of trace elements in wines and health risk assessment via wine consumption were investigated in 315 wines. Samples were collected from eight major wine-producing regions in China. The concentrations of twelve trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and Duncan's multiple range test was applied to analyze significant variations (p < 0.05) of trace elements in different regions. Based on a 60 kg adult drinker consuming 200 mL of wine per day, the estimated daily intake (EDI) of each element from wines was far below the provisional tolerable daily intake (PTDI). Health risk assessment indicated the ingestion influence of individual elements and combined elements through this Chinese wine daily intake did not constitute a health hazard to people. However, Cr and Mn were the potential contaminants of higher health risk in Chinese wines. The cumulative impact of wine consumption on trace elements intake in the daily diet of drinkers should not be ignored due to the presence of other intake pathways.


Subject(s)
Risk Assessment , Spectrum Analysis , Trace Elements/analysis , Wine/analysis , China , Humans , Mass Spectrometry , Quality Control
10.
Plant Physiol Biochem ; 135: 469-479, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30473422

ABSTRACT

Anthocyanins contents and compositions play an important role in grape berries and wines. Grapevines are widely cultivated in arid and semi-arid areas, and water shortage restricts the development of wine industry. The aim of this work was to gain insight on the effect of regulated deficit irrigation (RDI) on the accumulation and biosynthesis of anthocyanins in Cabernet Sauvignon (Vitis Vinifera L.) grapes and wines. High-performance liquid chromatography (HPLC) was used for anthocyanins profiles analyses and real-time quantitative PCR (qRT-PCR) was used for the genes expressions measurement. The grapevines were treated with 60% (RDI-1), 70% (RDI-2), 80% (RDI-3), 100% (CK, traditional drip irrigation) of their estimated evapotranspiration (ETc) respectively. RDI treatments significantly reduced titration acid and increased pH with higher total soluble solids. RDI-1 treatment increased total anthocyanins contents in berries and wines in both two vintages. RDI-1 and RDI-2 treatments significantly increased the contents of acylated anthocyanins in berries and wines, especially Malvidin-3-acetly-glucoside. RDI treatments significantly increased non-acylated anthocyanins contents in wines, such as Delphinidin-3-gliucoside and Malvidin-3-glucoside. RDI treatments upregulated the expressions of VvPAL, VvC4H, VvCHS, VvF3'H, VvF3'5'H, VvLDOX, and VvOMT in both two vintages. Correlation analysis showed the accumulation of anthocyanins was closely related to the key genes expressions, including VvPAL, VvF3'H, VvF3'5'H etc. The present results provided direct evidence and detailed data to explain that RDI treatments regulated the accumulation of anthocyanins by regulating genes expressions in the anthocyanin synthesis pathway.


Subject(s)
Agricultural Irrigation , Anthocyanins/metabolism , Fruit , Vitis/metabolism , Wine , Agricultural Irrigation/methods , Anthocyanins/analysis , Anthocyanins/biosynthesis , Chromatography, High Pressure Liquid , Dehydration , Fruit/chemistry , Gene Expression Regulation, Plant , Genes, Plant , Real-Time Polymerase Chain Reaction , Vitis/physiology , Wine/analysis
11.
Plant Physiol Biochem ; 130: 501-510, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30096685

ABSTRACT

Grapes are one of the most important fruits because of their economic and nutritional benefits, and grapevines are widely cultivated in arid and semi-arid areas. Therefore, it is critical to study the mechanism by which grapevines respond to water stress. In this research, micro-morphological and metabolomic analyses were conducted to evaluate the effects of water stress on stomatal morphology and volatile compounds extracted from the leaves of grapevine plants. There were two treatments: well-watered plants (watered daily) and drought-stressed plants (no irrigation). Plant weights were recorded, and the well-watered plants were irrigated daily to replace the water lost to evapotranspiration. The water status of the grapevines was determined according to their relative water content. The changes in proline content, hydrogen peroxide content, lipid peroxidation and antioxidant activities, as well as those of photosynthetic parameters and chlorophyll fluorescence, were monitored as markers of water stress. The microscopic changes in stomatal behavior were observed using a scanning electron microscope. A total of 12 secondary volatile compounds, including aldehydes, ketones and alcohols, were detected in the grapevine leaves. Among them, (E)-2-hexenal and 3-hexenal showed a significant increase after water stress. Multivariate statistical analysis revealed that the levels of 3-hexenal and (E)-2-hexenal were closely related to the changes in proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD). These results suggested that water stress could regulate the accumulation of green leaf volatiles, especially (E)-2-hexenal and 3-hexenal, in coordination with the reactive oxygen species (ROS) scavenging system. These compounds may act as signaling compounds in response to water stress in grapevines.


Subject(s)
Plant Leaves/physiology , Vitis/physiology , Aldehydes/metabolism , Chlorophyll/metabolism , Dehydration , Fatty Acids, Volatile/metabolism , Metabolomics , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Stomata/physiology , Plant Stomata/ultrastructure , Vitis/metabolism , Vitis/ultrastructure
12.
Molecules ; 23(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096898

ABSTRACT

Amino acid contents and their derived volatile compositions in Cabernet Sauvignon grapes and wines after regulated deficit irrigation (RDI) were investigated during the 2015 and 2016 growing seasons in Yinchuan (NingXia, China). High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used for amino acid and volatile compound analyses. Three RDI strategies were tested: 60% (RDI-1), 70% (RDI-2), and 80% (RDI-3) of grapevine estimated evapotranspiration (ETc), and 100% ETc was used as the control group (CK). RDI-treated vines had lower yields and berry weights with higher total soluble solids than the control treatment. RDI-1 increased proline levels in berries and wines. RDI-2 enhanced tyrosine and asparagine levels in wines. RDI-3 enhanced arginine, alanine, valine, leucine, and isoleucine levels in berries and wines. RDI-2 and RDI-3 increased the concentrations of 2-methyl-1-butyl acetate, benzaldehyde, 3-methyl-1-pentanol, and 3-methyl-1-butanol in wines. The accumulation of volatile compounds was closely related to the amino acid concentrations-especially isoleucine, valine, and leucine-in grapes. Our results showed that RDI treatments altered amino acid concentrations and their derived volatile compositions in wines.


Subject(s)
Agricultural Irrigation , Amino Acids/analysis , Fruit/chemistry , Vitis/chemistry , Volatile Organic Compounds/analysis , Wine/analysis , Cluster Analysis , Weather
13.
Food Chem ; 245: 667-675, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287424

ABSTRACT

The effect of regulated deficit irrigation (RDI) on fatty acids and their derived volatiles in 'Cabernet Sauvignon' grapes and wines was investigated during two growing seasons in the east foot of Mt. Helan, the semi-arid area. The vines received water with 60% (RDI-1), 70% (RDI-2), 80% (RDI-3), 100% (CK, traditional drip irrigation) of their estimated evapotranspiration (ETc) respectively. RDI treatments resulted in lower yield, berry weight and titratable acidity with higher total soluble solids. RDI-1 increased the content of unsaturated fatty acids in berries and decreased the level of alcohols and esters volatiles in wines. RDI-2 and RDI-3 enhanced 1-hexanol and esters in wines in comparison with CK. The concentrations of C6 aroma compounds were closely correlated with unsaturated fatty acids (p < .05), especially linolenic acid and linoleic acid. The present results provided direct evidence and detailed data to explain the effect of RDI on grapes and wines composition regarding fatty acids and their derived volatiles.


Subject(s)
Agricultural Irrigation/methods , Fatty Acids/metabolism , Vitis/metabolism , Wine/analysis , Alcohols/metabolism , China , Esters/analysis , Esters/metabolism , Fatty Acids/analysis , Fruit/chemistry , Fruit/metabolism , Hexanols/analysis , Hexanols/metabolism , Odorants/analysis , Seasons , Vitis/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Water
14.
Food Chem ; 231: 185-191, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28449995

ABSTRACT

A decade has passed since melatonin was first reported in grapes in 2006. During this time, melatonin has not only been found in the berries of most wine grape (Vitis vinifera L.) cultivars, but also in most grape-related foodstuffs, e.g. wine, grape juice and grape vinegar. In this review, we discuss the melatonin content in grapes and grape-related foodstuffs (especially wine) from previous studies, the physiological function of melatonin in grapes, and the factors contributing to the production of melatonin in grapes and wines. In addition, we identify future research needed to clarify the mechanisms of grape melatonin biosynthesis and regulation, and establish more accurate analysis methods for melatonin in grapes and wines.


Subject(s)
Melatonin , Vitis , Fruit , Wine
15.
Molecules ; 21(10)2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27754331

ABSTRACT

The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.


Subject(s)
Fruit/chemistry , Plant Extracts/analysis , Plant Growth Regulators/pharmacology , Vitis/chemistry , Abscisic Acid/pharmacology , Acetates/pharmacology , Anthocyanins/analysis , Cyclopentanes/pharmacology , Fatty Acids/analysis , Fruit/drug effects , Oxylipins/pharmacology , Vitis/drug effects , Volatile Organic Compounds/analysis
16.
Sensors (Basel) ; 16(9)2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27618059

ABSTRACT

The study proposes a small U-shaped bending-induced interference optical fiber sensor; this novel sensor is a probe-type sensor manufactured using a mechanical device, a heat source, optical fiber and a packaging module. This probe-type sensor overcomes the shortcomings of conventional optical fibers, including being difficult to repair and a tendency to be influenced by external forces. We manufactured three types of sensors with different curvature radiuses. Specifically, sensors with three radiuses (1.5 mm, 2.0 mm, and 3.0 mm) were used to measure common water and glucose solutions with concentrations of between 6% and 30% (the interval between concentrations was 4%). The results show that the maximal sensitivity was 0.85 dB/% and that the linearly-dependent coefficient was 0.925. The results further show that not only can the small U-shaped bending-induced interference optical fiber sensor achieve high sensitivity in the measurement of glucose solutions, but that it can also achieve great stability and repeatability.

17.
J Pineal Res ; 57(2): 200-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25039750

ABSTRACT

Grapes are an important economic crop and are widely cultivated around the world. Most grapes are grown in arid or semi-arid regions, and droughts take a heavy toll in grape and wine production areas. Developing effective drought-resistant cultivation measures is a priority for viticulture. Melatonin, an indoleamine, mediates many physiological processes in plants. Herein, we examined whether exogenously applied melatonin could improve the resistance of wine grape seedlings grown from cuttings to polyethylene glycol-induced water-deficient stress. The application of 10% polyethylene glycol (PEG) markedly inhibited the growth of cuttings, caused oxidative stress and damage from H2 O2 and O2∙-, and reduced the potential efficiency of Photosystem II and the amount of chlorophyll. Application of melatonin partially alleviated the oxidative injury to cuttings, slowed the decline in the potential efficiency of Photosystem II, and limited the effects on leaf thickness, spongy tissue, and stoma size after application of PEG. Melatonin treatment also helped preserve the internal lamellar system of chloroplasts and alleviated the ultrastructural damage induced by drought stress. This ameliorating effect may be ascribed to the enhanced activity of antioxidant enzymes, increased levels of nonenzymatic antioxidants, and increased amount of osmoprotectants (free proline). We conclude that the application of melatonin to wine grapes is effective in reducing drought stress.


Subject(s)
Antioxidants/metabolism , Chloroplasts/drug effects , Melatonin/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Vitis/drug effects , Vitis/metabolism , Chloroplasts/ultrastructure , Microscopy, Electron, Transmission , Oxidative Stress/drug effects , Plant Leaves/ultrastructure
18.
Molecules ; 19(7): 10189-207, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25025149

ABSTRACT

The grape berries of two varieties, Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (CS) (Vitis vinifera L.) were treated with 0.40 mg/L 24-epibrassinolide (EBR), 1.00 mg/L brassinazole (Brz), and deionized water (control), at the veraison period. The EBR treatment significantly increased total phenolic content (TPC), total tannin content (TTC) and total anthocyanin content (TAC) of Yan73 and CS wines, whereas Brz treatment decreased TPC, total flavonoid content (TFC), TAC in the two wines. Moreover, the content of most of the phenolic compounds identified by HPLC-DAD/ESI-MS in EBR-treated wines was significantly higher than that in control. The antioxidant capacities, which determined using DPPH, ABTS and HRSA methods, of the wines were increased by EBR treatment as well. There was a good correlation between the antioxidant capacity and phenolic content. The results demonstrated that EBR could enhance the phenolic compounds and antioxidant capacity of Yan73 and CS wines, but the effects may vary by different cultivars.


Subject(s)
Anthocyanins/analysis , Antioxidants/analysis , Brassinosteroids/chemistry , Fruit/chemistry , Steroids, Heterocyclic/chemistry , Tannins/analysis , Vitis/chemistry , Wine/analysis , Food Analysis/methods
19.
Food Chem ; 141(3): 3056-65, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871059

ABSTRACT

The objective of this study is to investigate the influence of application of exogenous 24-epibrassinolide (EBR) on the antioxidant capacity, anthocyanins and phenolics content of Vitis vinifera grape berry (cvs. Yan 73 and Cabernet Sauvignon). The grapevine clusters were sprayed with 0 (control), 0.10, 0.40, or 0.80 mg/l of 24-epibrassinolide during veraison, respectively. The EBR application increased the activities of phenylalanine ammonia-lyase (PAL) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT), the content of total phenolics, tannins, flavonoids and anthocyanins, individual anthocyanins and the antioxidant capacity of matured grape skins in both varieties. The application also increased the content of flavonoids and anthocyanins in Yan73 pulp. Compared to the other treatments, the treatment of EBR at 0.40 mg/l had significantly higher level than the control in all above assays. Our results indicated that the exogenous EBR treatment can significantly promote grape ripening and enhance anthocyanins and other phenolics contents and antioxidant capacity in the grape skin.


Subject(s)
Antioxidants/metabolism , Brassinosteroids/pharmacology , Phenols/metabolism , Secondary Metabolism/drug effects , Steroids, Heterocyclic/pharmacology , Vitis/drug effects , Vitis/metabolism , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/metabolism , Fruit/chemistry , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Phenols/analysis , Vitis/chemistry , Vitis/growth & development
20.
Food Chem ; 134(4): 2049-56, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23442655

ABSTRACT

Spine grape (Vitis davidii Foex) is an important wild plant species in South China. To provide sufficient experimental evidence for the strong antioxidant activity of spine grapes, four cultivars from Chongyi County, China, including three red varieties (Junzi #1, Junzi #2, and Liantang) and one white variety (Baiyu) were evaluated. The Junzi #1 had the highest phenolic content (total phenolic, flavonoids, flavanols, and anthocyanins) and the strongest antioxidant capacity (DPPH radical-scavenging capacity, cupric-reducing capacity and hydroxyl radical-scavenging activity) among the four varieties. HPLC analysis of spine grapes revealed that the (+)-catechin was the most abundant phenolics and the hydroxycinnamic acids were the major phenolic acids in the four varieties. Hierarchical cluster analysis showed that the Junzi #1 belongs to the group with high phenolic content and strong antioxidant power. The results suggest the Junzi #1 has the best health promoting properties, and the higher utilization value and potential for development.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Phenols/analysis , Plant Extracts/analysis , Vitis/chemistry , China , Chromatography, High Pressure Liquid
SELECTION OF CITATIONS
SEARCH DETAIL
...