ABSTRACT
In this study, we proposed that administration of hippocampal growth hormone in ageing animals with growth hormone deficiency can compensate long-term potentiation and synaptic plasticity in nucleus basalis magnocellularis (NBM)-lesioned rats. Aged male Wistar rats were randomly divided into six groups (seven in each) of sham-operated healthy rats (Cont); NBM-lesioned rats (L); NBM-lesioned rats and intrahippocampal injection of growth hormone vehicle (L + Veh); NBM-lesioned and intrahippocampal injection of growth hormone (10, 20 and 40 µg.2 µl-1) (L + GH). In vivo electrophysiological recording techniques were used to characterize maintenance of long-term potentiation at distinct times (1, 2, 3, 24 and 48 hours) after high-frequency stimulation. The population spike was enhanced significantly for about 48 hours following tetanic stimulation in rats treated with a dose-dependent growth hormone compared to the vehicle group (p < 0.05), possibly through neuronal plasticity and neurogenesis in affected areas.
Subject(s)
Basal Nucleus of Meynert/drug effects , Growth Hormone/pharmacology , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Animals , Basal Nucleus of Meynert/physiology , Hippocampus/physiology , Male , Models, Animal , Neuronal Plasticity/physiology , Rats, Wistar , Time FactorsABSTRACT
ABSTRACT In this study, we proposed that administration of hippocampal growth hormone in ageing animals with growth hormone deficiency can compensate long-term potentiation and synaptic plasticity in nucleus basalis magnocellularis (NBM)-lesioned rats. Aged male Wistar rats were randomly divided into six groups (seven in each) of sham-operated healthy rats (Cont); NBM-lesioned rats (L); NBM-lesioned rats and intrahippocampal injection of growth hormone vehicle (L + Veh); NBM-lesioned and intrahippocampal injection of growth hormone (10, 20 and 40 µg.2 µl-1) (L + GH). In vivo electrophysiological recording techniques were used to characterize maintenance of long-term potentiation at distinct times (1, 2, 3, 24 and 48 hours) after high-frequency stimulation. The population spike was enhanced significantly for about 48 hours following tetanic stimulation in rats treated with a dose-dependent growth hormone compared to the vehicle group (p < 0.05), possibly through neuronal plasticity and neurogenesis in affected areas.
RESUMO Neste estudo, propusemos que a administração de hormônio hipocampal do crescimento em animais envelhecidos com deficiência de hormônio do crescimento pode compensar a potencialização em longo prazo e a plasticidade sináptica em ratos lesados do núcleo basalis magnocellularis (NBM). Ratos machos Wistar foram divididos aleatoriamente em seis grupos (sete ratos em cada grupo) de ratos falso-operados saudáveis (Cont); ratos lesados do NBM (L); ratos lesados do NBM e injeção intrahipocampal de veículo de hormônio do crescimento (L + Veh); ratos lesados do NBM e injeção de hormônio do crescimento (10, 20 e 40 μg.2 μl-1) (L + GH). Técnicas de registro eletrofisiológico in vivo foram utilizadas para caracterizar a manutenção da potencialização em longo prazo em momentos distintos (1, 2, 3, 24 e 48 horas) após estimulação de alta frequência. O pico populacional aumentou significativamente cerca de 48 horas após a estimulação tetânica em ratos tratados com um hormônio do crescimento dose-dependente, em comparação com o grupo veículo (p <0,05), possivelmente através da plasticidade neuronal e da neogênese nas áreas afetadas.
Subject(s)
Animals , Male , Growth Hormone/pharmacology , Basal Nucleus of Meynert/drug effects , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Time Factors , Rats, Wistar , Basal Nucleus of Meynert/physiology , Models, Animal , Hippocampus/physiology , Neuronal Plasticity/physiologyABSTRACT
ABSTRACT Cerebral ischemia commonly occurs when the blood flow to the entire brain or some part of the brain is disrupted. Global cerebral ischemia attenuates the nucleus tractus solitaries (NTS) EEG rhythm, increases the free radicals production and brain inflammation. Ellagic acid (EA) has antioxidative and anti-inflammatory effects against neural damages. The aim of this study was to evaluate the role of ellagic acid on EEG power in the global cerebral ischemia.Rats were divided into four groups: SO (sham) received normal saline, EA+SO, I/R (normal saline + ischemia/reperfusion), and EA + I/R. EA (100 mg/kg, dissolved in normal saline) or normal saline was administered orally (gavage) for 10 days. Animal underwent to 20 minutes of ischemia followed by 30 minutes of reperfusion in I/R and I/R+EA groups. EEG was recorded from NTS and serum antioxidant enzyme activity was measured.Data showed that ellagic acid improved electrical power of NTS. Theta and delta bands frequencies in the ischemic animals were decreased in I/R group with compared to SO group significantly (P<0.001). Ellagic acid has beneficial effect on superoxide dismutase activity in the ischemic animals with compared to I/R group (P<0.01). In contrast, ellagic acid has no significant role on glutathione peroxidase activity in the pretreated ischemic rats in comparison with I/R group.These findings suggest that ellagic acid increased antioxidant enzymes activity that scavenge the ROS due to ischemia so that it may have neuroprotective effect on NTS neurons and consequently reverse its electrophysiology pattern.
ABSTRACT
ABSTRACT Relapse is highly prevalent after detoxification and depression. Due to the advantages of venlafaxine compared with other antidepressants, it is expected that venlafaxine administration may reduce relapse after detoxification and depression. This study aimed to evaluate the effects of venlafaxine on depression-induced relapse to morphine dependence after methadone detoxification. Eighty Sprague-Dawley rats were habituated and conditioned with morphine (10 mg/kg, S.C., for 4 days). After that, primary forced swimming and conditioned place preference (CPP) were tested. They were followed by methadone (70 mg/kg/day, P.O., for 7 days) administration, extinguishing, forced swimming stress (FSS) and administration of venlafaxine (80 mg/kg/day, I.P., for 7 days). Finally same tests were performed. Administration of venlafaxine resulted in a decrement in final preference scores associated with a prime morphine injection (PMI) compared to the primary scores in methadone treated (MTD+) animals. In a swimming test, venlafaxine increased the amount of final floating and decreased final activity scores compared with the primary scores after administration of methadone. Venlafaxine reduced locomotor activity in MTD+ animals in the final test with PMI. There was a positive correlation between the final activity and preference scores after PMI. In conclusion, venlafaxine improved anxiety and depression-induced relapse on methadone detoxified rats.
ABSTRACT
The aim of the present study was to investigate the protective effect of crocin on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rats. Thirty-two male rats were randomly divided into sham, I/R, I/R + crocin pretreatment and crocin alone groups. To induce I/R lesions, the celiac artery was clamped for 30 min, and the clamp was then removed to allow reperfusion for 3 h. Crocin-pretreated rats received crocin (15 mg/kg, i.p.) 30 min prior to the induction of I/R injury. Samples of gastric mucosa were collected to quantify the protein expression of caspase-3, an apoptotic factor, and inducible nitric oxide synthase (iNOS), a pro-inflammatory protein, by Western blot. Pretreatment with crocin decreased the total area of gastric lesions and decreased the protein expression levels of caspase-3 and iNOS induced by I/R injury. Our findings showed a protective effect of crocin in gastric mucosa against I/R injury. This effect of crocin was mainly mediated by reducing the protein expression of iNOS and caspase-3.
O objetivo do presente estudo foi investigar o efeito protetor da crocina em lesões da mucosa gástrica causadas por isquemia-reperfusão (I/R) em ratos. Trinta e dois ratos machos aleatoriamente divididos em grupos de ratos normais, operados como controle, I/R. I/R + pré-tratamento com crocina e crocina sozinha. Para induzir lesões I/R, a artéria celíaca foi grampeada durante 30 minutos e, em seguida, o grampo foi removido para permitir a reperfusão por 3 h. Ratos com pré-tratamento com crocina receberam crocina (15 mg/kg, ip) 30 minutos antes da indução do dano I/R. Amostras de mucosa gástrica foram coletadas para qiuantificar a expressão da proteína da caspase-3, o fator apoptótico, e óxido nítrico sintase induzível (iNOS), uma proteína anti-inflamatória, pela técnica de Western Blot. O pré-tratamento com crocina diminuiu a área total de lesões gástricas e a expressão de níveis de caspase-3 e iNOS induzidas pelo dano I/R. Nossos resultados mostraram o efeito protetor da crocina na mucosa gástrica contra o dano I/R. Este efeito foi mediado, principalmente, por diminuição da expressão das proteínas iNOS e caspase-3.