Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892449

ABSTRACT

Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.


Subject(s)
CCN Intercellular Signaling Proteins , Fibrosis , Genetic Therapy , Myocardial Infarction , RNA, Messenger , Animals , Humans , Male , Mice , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Disease Models, Animal , Gene Transfer Techniques , Genetic Therapy/methods , Mice, Inbred C57BL , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ventricular Remodeling/genetics
2.
J Mol Cell Cardiol ; 188: 61-64, 2024 03.
Article in English | MEDLINE | ID: mdl-38301803

ABSTRACT

The mammalian heart has a limited regenerative capacity. Previous work suggested the heart can regenerate during development and immediately after birth by inducing cardiomyocyte (CM) proliferation; however, this capacity is lost seven days after birth. modRNA gene delivery, the same technology used successfully in the two mRNA vaccines against SARS-CoV-2, can prompt cardiac regeneration, cardiovascular regeneration and cardiac protection. We recently established a novel CM-specific modRNA translational system (SMRTs) that allows modRNA translation only in CMs. We demonstrated that this system delivers potent intracellular genes (e.g., cell cyclepromoting Pkm2), which are beneficial when expressed in one cell type (i.e., CMs) but not others (non-CMs). Here, we identify Lin28a as an important regulator of the CM cell cycle. We show that Lin28a is expressed in CMs during development and immediately after birth, but not during adulthood. We describe that specific delivery of Lin28a into CM, using CM SMRTs, enables CM cell division and proliferation. Further, we determine that this proliferation leads to cardiac repair and better outcome post MI. Moreover, we identify the molecular pathway of Lin28a in CMs. We also demonstrate that Lin28a suppress Let-7 which is vital for CM proliferation, partially due to its suppressive role on cMYC, HMGA2 and K-RAS.


Subject(s)
Cardiac Surgical Procedures , Myocytes, Cardiac , Animals , Humans , Adult , COVID-19 Vaccines , Cell Division , Protein Biosynthesis , Mammals
3.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Article in English | MEDLINE | ID: mdl-35191471

ABSTRACT

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Subject(s)
Cardiomyopathies , Gene Editing , Humans , Mice , Animals , Cardiomyopathies/genetics , Cardiomyopathies/therapy
4.
Clin Transplant ; 36(1): e14512, 2022 01.
Article in English | MEDLINE | ID: mdl-34658078

ABSTRACT

Opioid analgesics are commonly used post-lung transplant, but have many side effects and are associated with worse outcomes. We conducted a retrospective review of all lung transplant recipients who were treated with a multimodal opioid-sparing pain protocol. The use of liposomal bupivacaine intercostal nerve block was variable due to hospital restrictions. The primary objective was to describe opioid requirements and patient-reported pain scores early post-lung transplant and to assess the impact of intraoperative liposomal bupivacaine intercostal nerve block. We treated 64 lung transplant recipients with our protocol. Opioid utilization decreased to a mean of 43 milligram oral morphine equivalents by postoperative day 4. Median pain scores peaked at 4 on postoperative day 1 and decreased thereafter. Only three patients were discharged home with opioids, all of whom were taking opioid agonist therapy pre-transplant for opioid use disorder. Patients who received liposomal bupivacaine intercostal nerve block in the operating room had a significant reduction in opioid consumption over postoperative day 1 through 4 (228 mg vs. 517 mg, P= .032). A multimodal opioid-sparing pain management protocol is feasible and resulted in weaning of opioids prior to hospital discharge.


Subject(s)
Analgesics, Opioid , Lung Transplantation , Analgesics, Opioid/therapeutic use , Anesthetics, Local , Bupivacaine , Humans , Intercostal Nerves , Pain Management , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Retrospective Studies
5.
Heart Rhythm ; 19(1): 113-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34563688

ABSTRACT

BACKGROUND: Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE: The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS: Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS: Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION: In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Hypertension, Pulmonary/physiopathology , Ventricular Remodeling , Action Potentials , Animals , Disease Models, Animal , Indoles , Magnetic Resonance Imaging , Male , Pneumonectomy , Pyrroles , Rats , Rats, Sprague-Dawley , Thoracotomy
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502015

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Lung/drug effects , Pulmonary Arterial Hypertension/drug therapy , RNA, Small Interfering/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Animals , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Genetic Therapy , Humans , Lung/metabolism , Lung/pathology , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , RNA, Small Interfering/therapeutic use , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/genetics , Vascular Remodeling/drug effects
7.
J Card Surg ; 36(11): 4256-4264, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34219277

ABSTRACT

BACKGROUND AND AIM: Patients with severe coronavirus disease 2019 (COVID-19) develop a profound cytokine-mediated pro-inflammatory response. This study reports outcomes in 10 patients with COVID-19 supported on veno-venous extracorporeal membrane oxygenation (VV-ECMO) who were selected for the emergency use of a hemoadsorption column integrated in the ECMO circuit. MATERIALS AND METHODS: Pre and posttreatment, clinical data, and inflammatory markers were assessed to determine the safety and feasibility of using this system and to evaluate the clinical effect. RESULTS: During hemoadsorption, median levels of interleukin (IL)-2R, IL-6, and IL-10 decreased by 54%, 86%, and 64%, respectively. Reductions in other markers were observed for lactate dehydrogenase (-49%), ferritin (-46%), d-dimer (-7%), C-reactive protein (-55%), procalcitonin (-76%), and lactate (-44%). Vasoactive-inotrope scores decreased significantly over the treatment interval (-80%). The median hospital length of stay was 53 days (36-85) and at 90-days post cannulation, survival was 90% which was similar to a group of patients without the use of hemoadsorption. CONCLUSIONS: Addition of hemoadsorption to VV-ECMO in patients with severe COVID-19 is feasible and reduces measured cytokine levels. However, in this small series, the precise impact on the overall clinical course and survival benefit still remains unknown.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Catheterization , Humans , Respiratory Distress Syndrome/therapy , SARS-CoV-2
8.
Mol Ther ; 29(10): 3042-3058, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34332145

ABSTRACT

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFß, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.


Subject(s)
Cellular Reprogramming/genetics , Genetic Therapy/methods , Ischemia/therapy , Muscle, Skeletal/blood supply , Myocardial Infarction/therapy , Neovascularization, Physiologic/genetics , Regeneration/genetics , Transfection/methods , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/metabolism , Humans , Male , Mice , Mice, Knockout, ApoE , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics
9.
Comp Med ; 71(3): 240-246, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34082856

ABSTRACT

Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1ß, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.


Subject(s)
Myocardial Infarction , Sheep, Domestic , Animals , Heart Ventricles , Male , Myocardial Infarction/veterinary , Myocardium , Sheep , Ventricular Function, Left
10.
J Health Psychol ; 26(8): 1119-1125, 2021 07.
Article in English | MEDLINE | ID: mdl-31311333

ABSTRACT

In this commentary, we highlight key scientific advancements in the area of depression and heart disease dual diagnosis, to explore how new approaches can be integrated from a mental health counseling perspective. The incorporation of mental health counseling is suggested as an aid in the treatment of patients with a cardiac disease diagnosis. However, there is no structured awareness or training program for mental health counselors to associate depression with heart disease since this involves both a high level of interdisciplinary research and collaboration with existing healthcare providers. Alongside rampant calls for changes in our modern healthcare system, new holistic practices may emerge, placing mental health services at the forefront to assist in improving cardiac disease patient outcomes.


Subject(s)
Heart Diseases , Mental Health Services , Counseling , Heart Diseases/therapy , Humans , Mental Health , Psychotherapy
11.
Semin Thorac Cardiovasc Surg ; 33(2): 407-415, 2021.
Article in English | MEDLINE | ID: mdl-32621962

ABSTRACT

Thoracic organs from hepatitis C virus (HCV) positive donors are not commonly used for transplantation. The development of direct-acting antivirals (DAA) for HCV treatment has led to renewed interest in using HCV-positive organs. We evaluated HCV transmission rates, viremia clearance, and short-term outcomes in HCV-negative patients who received HCV-positive thoracic organs at our institution. From January 1, 2018 to May 31, 2019, 38 patients underwent HCV-positive thoracic organ transplantation (16 lungs and 22 hearts). Heart recipients were started on glecaprevir/pibrentasvir, a pangenotypic DAA, when they developed HCV viremia. Lung recipients were empirically started on glecaprevir/pibrentasvir within the first 3 post-transplant days. The primary outcome was cure of HCV defined as sustained virologic response at 12 weeks (SVR12). All heart recipients developed HCV viremia with median initial viral load of 64,565 IU/mL (interquartile range: 1660-473,151). The median time from DAA initiation to viremia clearance was 19 days (confidence interval: 15-27 days). Eleven out of 16 (68.8%) lung recipients developed HCV viremia with median initial viral load of 26 IU/mL (interquartile range: 15-143). The median time from DAA initiation to viremia clearance was 10 days (confidence interval: 6-17 days). Five out of 16 (31.3%) lung recipients never became viremic. All patients demonstrated SVR12. Thoracic organ transplantation from HCV viremic donors is safe with excellent short-term survival. Early initiation of HCV treatment results in rapid viremia clearance and SVR12. Long-term outcomes and optimal timing of DAA initiation remains to be determined.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Organ Transplantation , Antiviral Agents/adverse effects , Hepacivirus/genetics , Hepatitis C/diagnosis , Hepatitis C/drug therapy , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/drug therapy , Humans , Tissue Donors
12.
J Heart Lung Transplant ; 39(11): 1199-1207, 2020 11.
Article in English | MEDLINE | ID: mdl-32739334

ABSTRACT

BACKGROUND: Increased utilization of hepatitis C virus (HCV)-positive donors has increased transplantation rates. However, high levels of viremia have been documented in recipients of viremic donors. There is a knowledge gap in how transient viremia may impact acute cellular rejections (ACRs). METHODS: In this study, 50 subjects received hearts from either viremic or non-viremic donors. The recipients of viremic donors were classified as nucleic acid amplification testing (NAT)+ group, and the remaining were classified as NAT-. All patients were monitored for viremia levels. Endomyocardial biopsies were performed through 180 days, evaluating the incidence of ACRs. RESULTS: A total of 50 HCV-naive recipients received hearts between 2018 and 2019. A total of 22 patients (44%) who received transplants from viremic donors developed viremia at a mean period of 7.2 ± 0.2 days. At that time, glecaprevir/pibrentasvir was initiated. In the viremia period (<56 days), 14 of 22 NAT+ recipients (64%) had ACR vs 5 of 28 NAT- group (18%) (p = 0.001). Through 180 days, 17 of 22 NAT+ recipients (77%) had a repeat rejection biopsy vs 12 of 28 NAT- recipients (43%) (p = 0.02). NAT+ biopsies demonstrated disparity of ACR distribution: negative, low-grade, and high-grade ACR in 84%, 12%, and 4%, respectively, vs 96%, 3%, and 1%, respectively, in the NAT- group (p = 0.03). The median time to first event was 26 (interquartile range [IQR]: 8-45) in the NAT+ group vs 65 (IQR: 44-84) days in the NAT-. Time to first event risk model revealed that NAT+ recipients had a significantly higher rate of ACR occurrences, adjusting for demographics (p = 0.004). CONCLUSIONS: Transient levels of viremia contributed to higher rates and severity of ACRs. Further investigation into the mechanisms of early immune activation in NAT+ recipients is required.


Subject(s)
Graft Rejection/epidemiology , Heart Transplantation , Hepacivirus/immunology , Hepatitis C Antigens/immunology , Hepatitis C, Chronic/virology , Tissue Donors , Acute Disease , Adult , Aged , Female , Follow-Up Studies , Graft Rejection/etiology , Graft Rejection/immunology , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/immunology , Humans , Male , Middle Aged , Prospective Studies , Time Factors
13.
Clin Transplant ; 34(9): e13989, 2020 09.
Article in English | MEDLINE | ID: mdl-32441413

ABSTRACT

BACKGROUND: The use of direct-acting antivirals (DAA) has expanded transplantation from hepatitis C viremic donors (HCV-VIR). Our team has conducted an open-label, prospective trial to assess outcomes transplanting HCV viremic hearts. Glecaprevir/pibrentasvir (GLE/PIB) was our sole DAA. METHODS: Serial quantitative hepatitis C virus (HCV) RNA PCR was obtained to assess HCV viral titers. Between January 2018 and June 2019, a total of 50 recipients were transplanted. Of these, 22/50 (44%) were from HCV-VIR, the remaining 28 from non-viremic (HCV NON-VIR) donors. An 8-week course of GLE/PIB was initiated at 1 week post-transplant. RESULTS: There was no difference in demographic or clinical parameters between groups. All 22 recipients of HCV-VIR transplants became viremic. GLE/PIB was effective in decreasing viremia to undetectable levels by 6 weeks post-transplant in all patients. The median time to first undetectable HCV quantitative PCR was (4.3 weeks, IQR: 4-5.7 weeks). All patients demonstrated sustained undetectable viral load through 1-year follow-up. There was no difference in survival at one year between HCV NON-VIR 28/28: (100%) vs HCV-VIR 21/22 (95%) recipients. CONCLUSIONS: Our center reports excellent outcomes in transplanting utilizing hearts from HCV-VIR donors. No effect on survival or co-morbidity was found. An 8-week GLE/PIB course was safe and effective when initiated approximately 1 week post-transplant.


Subject(s)
Heart Transplantation , Hepatitis C, Chronic , Hepatitis C , Aminoisobutyric Acids , Antiviral Agents/therapeutic use , Benzimidazoles , Cyclopropanes , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Prospective Studies , Pyrrolidines , Quinoxalines , Sulfonamides , Treatment Outcome , Viremia/drug therapy , Viremia/etiology
15.
Mol Ther Methods Clin Dev ; 16: 192-203, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32055647

ABSTRACT

Gene therapy with adeno-associated virus (AAV)-based vectors shows great promise for the gene therapeutic treatment of a broad array of diseases. In fact, the treatment of genetic diseases with AAV vectors is currently the only in vivo gene therapy approach that is approved by the US Food and Drug Administration (FDA). Unfortunately, pre-existing antibodies against AAV severely limit the patient population that can potentially benefit from AAV gene therapy, especially if the vector is delivered by intravenous injection. Here, we demonstrate that we can selectively deplete anti-AAV antibodies by hemapheresis combined with AAV9 particles coupled to Sepharose beads. In rats that underwent hemapheresis and immunoadsorption, luciferase expression was dramatically increased in the hearts and fully restored in the livers of these rats. Importantly, our method can be readily adapted for the use in clinical AAV gene therapy.

16.
Circulation ; 141(11): 916-930, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31992066

ABSTRACT

BACKGROUND: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Subject(s)
Acid Ceramidase/physiology , Genetic Therapy , Hypoxia/metabolism , Myocardial Infarction/metabolism , RNA, Messenger/therapeutic use , Sphingolipids/metabolism , Acid Ceramidase/antagonists & inhibitors , Acid Ceramidase/genetics , Animals , Animals, Newborn , Apoptosis , Ceramides/metabolism , Cicatrix/pathology , Embryoid Bodies , Enzyme Induction , Female , Humans , Hypoxia/etiology , Hypoxia/pathology , Induced Pluripotent Stem Cells/metabolism , Inflammation , Male , Mice , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Transfection , Up-Regulation
17.
J Thorac Cardiovasc Surg ; 159(5): 1809-1819.e3, 2020 05.
Article in English | MEDLINE | ID: mdl-31679707

ABSTRACT

OBJECTIVE: Restoring calcium sensor protein (S100A1) activity in failing hearts poses a promising therapeutic strategy. We hypothesize that cardiac overexpression of the S100A1 gene mediated by a double-stranded adeno-associated virus (scAAV) results in better functional and molecular improvements compared with the single-stranded virus (ssAAV). METHODS: Heart failure was induced by coronary artery ligation. Then, intramyocardial injections of saline, AAV9 empty capsid, scAAV9.S100A1, and ssAAV9.S100A1 were performed. Ten weeks postinfarction, all rats received cardiac evaluation; serum and tissue were collected for genetic analysis, cytokine profiling, and assessments of mitochondrial function and structure. RESULTS: Overexpression of AAV9.S100A1 improved systolic and diastolic function. Compared with control, ejection fraction was greater in treated groups (54.8% vs 32.3%, P < .05). Similarly, end-diastolic volume index was significantly less in the treated group than in control (1.14 vs 1.59 mL/cm2), whereas fractional shortening was greater in treated groups than control (26% vs 38%, P < .05). Interestingly, cardiac mechanics were significantly better when treated with double-stranded virus compared with single-stranded. Quantitative polymerase chain reaction demonstrated robust transfection of myocardium with the S100A1 gene, with more infection in the self-complimentary group compared with the single-stranded group (5.68 ± 0.44 vs 4.09 ± 0.25 log10 genome copies per 100 ng of DNA; P < .0001). Concentrations of the inflammatory cytokines were elevated in the ssAAV9/S100A1 group compared with the scAAV9/S100A1. Assessment of mitochondrial respiration and morphology demonstrated that injection of self-complementary vector saved both mitochondrial structure and function. CONCLUSIONS: Gene therapy of S100A1 can prevent pathologic postmyocardial infarction remodeling and decrease inflammatory response in ischemic heart failure.


Subject(s)
Calcium Signaling , Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Heart Failure/therapy , Heart Ventricles/metabolism , Myocardial Infarction/therapy , S100 Proteins/genetics , Transfection , Ventricular Function, Left , Ventricular Remodeling , Animals , Cytokines/metabolism , Dependovirus/metabolism , Disease Models, Animal , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Inflammation Mediators/metabolism , Lipid Peroxidation , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , S100 Proteins/biosynthesis , Stroke Volume
19.
Heart Fail Rev ; 24(5): 759-777, 2019 09.
Article in English | MEDLINE | ID: mdl-30903356

ABSTRACT

Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.


Subject(s)
Cardiac Surgical Procedures/standards , Disease Models, Animal , Heart Failure/physiopathology , Rats/physiology , Rats/surgery , Animals , Humans , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , Rats/anatomy & histology , Reproducibility of Results , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Right/physiopathology
20.
J Vis Exp ; (145)2019 03 08.
Article in English | MEDLINE | ID: mdl-30907889

ABSTRACT

In this protocol, we detail the correct procedural steps and necessary precautions to successfully perform a left pneumonectomy and induce PAH in rats with the additional administration of monocrotaline (MCT) or SU5416 (Sugen). We also compare these two models to other PAH models commonly used in research. In the last few years, the focus of animal PAH models has moved towards studying the mechanism of angioproliferation of plexiform lesions, in which the role of increased pulmonary blood flow is considered as an important trigger in the development of severe pulmonary vascular remodeling. One of the most promising rodent models of increased pulmonary flow is the unilateral left pneumonectomy combined with a "second hit" of MCT or Sugen. The removal of the left lung leads to increased and turbulent pulmonary blood flow and vascular remodeling. Currently, there is no detailed procedure of the pneumonectomy surgery in rats. This article details a step-by-step protocol of the pneumonectomy surgical procedure and post-operative care in male Sprague-Dawley rats. Briefly, the animal is anesthetized and the chest is opened. Once the left pulmonary artery, pulmonary vein, and bronchus are visualized, they are ligated and the left lung is removed. The chest then closed and the animal recovered. Blood is forced to circulate only on the right lung. This increased vascular pressure leads to a progressive remodeling and occlusion of small pulmonary arteries. The second hit of MCT or Sugen is used one week post-surgery to induce endothelial dysfunction. The combination of increased blood flow in the lung and endothelial dysfunction produces severe PAH. The primary limitation of this procedure is that it requires general surgical skills.


Subject(s)
Hypertension, Pulmonary/surgery , Indoles/administration & dosage , Monocrotaline/administration & dosage , Pneumonectomy , Pyrroles/administration & dosage , Animals , Disease Models, Animal , Hypertension, Pulmonary/pathology , Lung/pathology , Male , Pulmonary Artery/pathology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL