Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924428

ABSTRACT

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Subject(s)
Autoantibodies , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12 Deficiency/immunology , Vitamin B 12/blood , Autoantibodies/blood , Autoantibodies/immunology , Female , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Middle Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Blood-Brain Barrier/metabolism , Male
2.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587074

ABSTRACT

The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Central Nervous System , RNA , Clone Cells
3.
Med ; 5(4): 321-334.e3, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38513660

ABSTRACT

BACKGROUND: Neurosyphilis is increasing in prevalence but its pathophysiology remains incompletely understood. This study assessed for CNS-specific immune responses during neurosyphilis compared to syphilis without neurosyphilis and compared these immune profiles to those observed in other neuroinflammatory diseases. METHODS: Participants with syphilis were categorized as having neurosyphilis if their cerebrospinal fluid (CSF)-venereal disease research laboratory (VDRL) test was reactive and as having syphilis without neurosyphilis if they had a non-reactive CSF-VDRL test and a white blood cell count <5/µL. Neurosyphilis and syphilis without neurosyphilis participants were matched by rapid plasma reagin titer and HIV status. CSF and plasma were assayed for markers of neuronal injury and glial and immune cell activation. Bulk RNA sequencing was performed on CSF cells, with results stratified by the presence of neurological symptoms. FINDINGS: CSF neopterin and five CSF chemokines had levels significantly higher in individuals with neurosyphilis compared to those with syphilis without neurosyphilis, but no markers of neuronal injury or astrocyte activation were significantly elevated. The CSF transcriptome in neurosyphilis was characterized by genes involved in microglial activation and lipid metabolism and did not differ in asymptomatic versus symptomatic neurosyphilis cases. CONCLUSIONS: The CNS immune response observed in neurosyphilis was comparable to other neuroinflammatory diseases and was present in individuals with neurosyphilis regardless of neurological symptoms, yet there was minimal evidence for neuronal or astrocyte injury. These findings support the need for larger studies of the CSF inflammatory response in asymptomatic neurosyphilis. FUNDING: This work was funded by the National Institutes of Health, grants K23MH118999 (S.F.F.) and R01NS082120 (C.M.M.).


Subject(s)
Neurosyphilis , Syphilis , United States , Humans , Syphilis/cerebrospinal fluid , Neuroinflammatory Diseases , Neurosyphilis/diagnosis , Neurosyphilis/cerebrospinal fluid , Syphilis Serodiagnosis/methods , Reagins
4.
HIV Med ; 25(1): 5-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37485570

ABSTRACT

PURPOSE OF REVIEW: The purpose of this narrative review is to consolidate and summarize the existing literature on sleep deficiency among people living with human immunodeficiency virus (HIV; PLWH), to discuss the potential impact of antiretroviral therapy on sleep deficiency and to identify priorities for future research in this area. RECENT FINDINGS: Three important domains of sleep deficiency include alterations in sleep quality (including sleep disorders), duration and timing. The existing HIV and sleep deficiency literature, which is robust for sleep quality but sparser for sleep duration or sleep timing, has identified epidemiological correlates and outcomes associated with sleep deficiency including sociodemographic factors, HIV-specific factors, aspects of physical and mental health and cognition. SUMMARY: Sleep deficiency is a common problem among PLWH and is likely underdiagnosed, although more high-quality research is needed in this area. Sleep quality has received the most attention in the literature via methodologies that assess subjective/self-reported sleep quality, objective sleep quality or both. There is significantly less research on sleep duration and minimal research on sleep timing. Use of certain antiretroviral therapy drugs may be associated with sleep deficiency for some individuals. Future research should utilize larger, longitudinal studies with consistent, comprehensive and validated methods to assess both subjective and objective measures of sleep deficiency to better understand the prevalence, correlates and clinical implications of sleep deficiency in PLWH.


Subject(s)
HIV Infections , Humans , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV , Sleep , Mental Health , Cognition
5.
Clin Infect Dis ; 78(6): 1608-1616, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38147306

ABSTRACT

BACKGROUND: Older people with human immunodeficiency virus (HIV, PWH) are prone to using multiple medications due to higher rates of medical comorbidities and the use of antiretroviral therapy (ART). We assessed the prevalence and clinical impact of polypharmacy among PWH. METHODS: We leveraged clinical data from the AIDS Clinical Trials Group A5322 study "Long-Term Follow-up of Older HIV-infected Adults: Addressing Issues of Aging, HIV Infection and Inflammation" (HAILO). We included PWH aged ≥40 years with plasma HIV RNA levels <200 copies/µL. We assessed the relationship between polypharmacy (defined as the use of 5 or more prescription medications, excluding ART) and hyperpolypharmacy (defined as the use of 10 or more prescription medications, excluding ART) with slow gait speed (less than 1 meter/second) and falls, including recurrent falls. RESULTS: Excluding ART, 24% of study participants had polypharmacy and 4% had hyperpolypharmacy. Polypharmacy was more common in women (30%) than men (23%). Participants with polypharmacy had a higher risk of slow gait speed (odds ratio [OR] = 1.78; 95% confidence interval [CI] = 1.27-2.50) and increased risk of recurrent falls (OR = 2.12; 95% CI = 1.06-4.23). The risk for recurrent falls was further increased in those with hyperpolypharmacy compared with those without polypharmacy (OR = 3.46; 95% CI = 1.32-9.12). CONCLUSIONS: In this large, mixed-sex cohort of PWH aged ≥40 years, polypharmacy was associated with slow gait speed and recurrent falls, even after accounting for medical comorbidities, alcohol use, substance use, and other factors. These results highlight the need for increased focus on identifying and managing polypharmacy and hyperpolypharmacy in PWH.


Subject(s)
Accidental Falls , HIV Infections , Polypharmacy , Humans , Male , Female , HIV Infections/drug therapy , HIV Infections/complications , Accidental Falls/statistics & numerical data , Middle Aged , Aged , Walking Speed , Adult , Comorbidity , Risk Factors
6.
JAMA Netw Open ; 6(11): e2342741, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37948085

ABSTRACT

This case-control study assesses cerebrospinal fluid markers of neuroinflammation and blood-brain barrier disruption in individuals with post­COVID-19 condition who reported neuropsychiatric symptoms.


Subject(s)
COVID-19 , Neuroinflammatory Diseases , Humans , Self Report , Brain
7.
Hum Genomics ; 17(1): 80, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37641126

ABSTRACT

Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Triage , Allantoin , Disease Outbreaks , Machine Learning
8.
Front Immunol ; 14: 1196395, 2023.
Article in English | MEDLINE | ID: mdl-37475853

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of ß-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.


Subject(s)
COVID-19 , Placenta , Female , Humans , Infant, Newborn , Pregnancy , Alarmins/metabolism , COVID-19/metabolism , Galectin 1/metabolism , Galectins/metabolism , SARS-CoV-2/metabolism
9.
Emerg Infect Dis ; 29(6): 1127-1135, 2023 06.
Article in English | MEDLINE | ID: mdl-37209667

ABSTRACT

Babesiosis is a globally distributed parasitic infection caused by intraerythrocytic protozoa. The full spectrum of neurologic symptoms, the underlying neuropathophysiology, and neurologic risk factors are poorly understood. Our study sought to describe the type and frequency of neurologic complications of babesiosis in a group of hospitalized patients and assess risk factors that might predispose patients to neurologic complications. We reviewed medical records of adult patients who were admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, during January 2011-October 2021 with laboratory-confirmed babesiosis. More than half of the 163 patients experienced >1 neurologic symptoms during their hospital admissions. The most frequent symptoms were headache, confusion/delirium, and impaired consciousness. Neurologic symptoms were associated with high-grade parasitemia, renal failure, and history of diabetes mellitus. Clinicians working in endemic areas should recognize the range of symptoms associated with babesiosis, including neurologic.


Subject(s)
Babesia microti , Babesiosis , Nervous System Diseases , Adult , Humans , United States/epidemiology , Babesiosis/complications , Babesiosis/epidemiology , Babesiosis/diagnosis , Connecticut/epidemiology , Nervous System Diseases/complications , Parasitemia/parasitology
11.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35801589

ABSTRACT

People with HIV (PWH) on antiretroviral therapy (ART) experience elevated rates of neurological impairment, despite controlling for demographic factors and comorbidities, suggesting viral or neuroimmune etiologies for these deficits. Here, we apply multimodal and cross-compartmental single-cell analyses of paired cerebrospinal fluid (CSF) and peripheral blood in PWH and uninfected controls. We demonstrate that a subset of central memory CD4+ T cells in the CSF produced HIV-1 RNA, despite apparent systemic viral suppression, and that HIV-1-infected cells were more frequently found in the CSF than in the blood. Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we show that the cell surface marker CD204 is a reliable marker for rare microglia-like cells in the CSF, which have been implicated in HIV neuropathogenesis, but which we did not find to contain HIV transcripts. Through a feature selection method for supervised deep learning of single-cell transcriptomes, we find that abnormal CD8+ T cell activation, rather than CD4+ T cell abnormalities, predominated in the CSF of PWH compared with controls. Overall, these findings suggest ongoing CNS viral persistence and compartmentalized CNS neuroimmune effects of HIV infection during ART and demonstrate the power of single-cell studies of CSF to better understand the CNS reservoir during HIV infection.


Subject(s)
HIV Infections , HIV-1 , HIV Infections/drug therapy , HIV Infections/pathology , HIV-1/genetics , Humans , Longitudinal Studies , Microglia/pathology , Viral Transcription
12.
Open Forum Infect Dis ; 9(7): ofac295, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35873293

ABSTRACT

Borrelia miyamotoi is an underdiagnosed cause of tick-borne illness in endemic regions and, in rare cases, causes neurological disease in immunocompetent patients. Here, we present a case of serologically confirmed Borrelia miyamotoi meningoencephalitis in an otherwise healthy patient who rapidly improved following initiation of antibiotic therapy.

13.
Cell Rep Methods ; 2(7): 100252, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35757815

ABSTRACT

Efficient quantitative assays for measurement of viral replication and infectivity are indispensable for future endeavors to develop prophylactic or therapeutic antiviral drugs or vaccines against SARS-CoV-2. We developed a SARS-CoV-2 cell-cell transmission assay that provides a rapid and quantitative readout to assess SARS-CoV-2 spike hACE2 interaction in the absence of pseudotyped particles or live virus. We established two well-behaved stable cell lines, which demonstrated a remarkable correlation with standard cell-free viral pseudotyping for inhibition by convalescent sera, small-molecule drugs, and murine anti-spike monoclonal antibodies. The assay is rapid, reliable, and highly reproducible, without a requirement for any specialized research reagents or laboratory equipment and should be easy to adapt for use in most investigative and clinical settings. It can be effectively used or modified for high-throughput screening for compounds and biologics that interfere with virus-cell binding and entry to complement other neutralization assays currently in use.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , COVID-19/therapy , Antibodies, Neutralizing , COVID-19 Vaccines , Antibodies, Viral , COVID-19 Serotherapy
14.
PLoS Biol ; 20(5): e3001506, 2022 05.
Article in English | MEDLINE | ID: mdl-35609110

ABSTRACT

The impact of Coronavirus Disease 2019 (COVID-19) mRNA vaccination on pregnancy and fertility has become a major topic of public interest. We investigated 2 of the most widely propagated claims to determine (1) whether COVID-19 mRNA vaccination of mice during early pregnancy is associated with an increased incidence of birth defects or growth abnormalities; and (2) whether COVID-19 mRNA-vaccinated human volunteers exhibit elevated levels of antibodies to the human placental protein syncytin-1. Using a mouse model, we found that intramuscular COVID-19 mRNA vaccination during early pregnancy at gestational age E7.5 did not lead to differences in fetal size by crown-rump length or weight at term, nor did we observe any gross birth defects. In contrast, injection of the TLR3 agonist and double-stranded RNA mimic polyinosinic-polycytidylic acid, or poly(I:C), impacted growth in utero leading to reduced fetal size. No overt maternal illness following either vaccination or poly(I:C) exposure was observed. We also found that term fetuses from these murine pregnancies vaccinated prior to the formation of the definitive placenta exhibit high circulating levels of anti-spike and anti-receptor-binding domain (anti-RBD) antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) consistent with maternal antibody status, indicating transplacental transfer in the later stages of pregnancy after early immunization. Finally, we did not detect increased levels of circulating anti-syncytin-1 antibodies in a cohort of COVID-19 vaccinated adults compared to unvaccinated adults by ELISA. Our findings contradict popular claims associating COVID-19 mRNA vaccination with infertility and adverse neonatal outcomes.


Subject(s)
COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , Female , Fetus , Gene Products, env , Humans , Mice , Placenta/metabolism , Pregnancy , Pregnancy Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Vaccination
15.
Nat Biotechnol ; 40(5): 681-691, 2022 05.
Article in English | MEDLINE | ID: mdl-35228707

ABSTRACT

As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.


Subject(s)
COVID-19 , Single-Cell Analysis , Chromatin , Humans , Single-Cell Analysis/methods , Transposases , Exome Sequencing
16.
BMC Infect Dis ; 22(1): 284, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337266

ABSTRACT

BACKGROUND: There is an urgent need to expand testing for SARS-CoV-2 and other respiratory pathogens as the global community struggles to control the COVID-19 pandemic. Current diagnostic methods can be affected by supply chain bottlenecks and require the assistance of medical professionals, impeding the implementation of large-scale testing. Self-collection of saliva may solve these problems, as it can be completed without specialized training and uses generic materials. METHODS: We observed 30 individuals who self-collected saliva using four different collection devices and analyzed their feedback. Two of these devices, a funnel and bulb pipette, were used to evaluate at-home saliva collection by 60 individuals. SARS-CoV-2-spiked saliva samples were subjected to temperature cycles designed to simulate the conditions the samples might be exposed to during the summer and winter seasons and sensitivity of detection was evaluated. RESULTS: All devices enabled the safe, unsupervised self-collection of saliva. The quantity and quality of the samples received were acceptable for SARS-CoV-2 diagnostic testing, as determined by human RNase P detection. There was no significant difference in SARS-CoV-2 nucleocapsid gene (N1) detection between the freshly spiked samples and those incubated with the summer and winter profiles. CONCLUSION: We demonstrate inexpensive, generic, buffer free collection devices suitable for unsupervised and home saliva self-collection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins , Pandemics , Saliva
17.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064122

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
19.
FEMS Microbes ; 3: xtac026, 2022.
Article in English | MEDLINE | ID: mdl-37332510

ABSTRACT

Background: Infections with respiratory viruses [e.g. influenza and respiratory syncytial virus (RSV)] can increase the risk of severe pneumococcal infections. Likewise, pneumococcal coinfection is associated with poorer outcomes in viral respiratory infection. However, there are limited data describing the frequency of pneumococcus and SARS-CoV-2 coinfection and the role of coinfection in influencing COVID-19 severity. We, therefore, investigated the detection of pneumococcus in COVID-19 inpatients during the early pandemic period. Methods: The study included patients aged 18 years and older, admitted to the Yale-New Haven Hospital who were symptomatic for respiratory infection and tested positive for SARS-CoV-2 during March-August 2020. Patients were tested for pneumococcus through culture-enrichment of saliva followed by RT-qPCR (to identify carriage) and serotype-specific urine antigen detection (UAD) assays (to identify presumed lower respiratory tract pneumococcal disease). Results: Among 148 subjects, the median age was 65 years; 54.7% were male; 50.7% had an ICU stay; 64.9% received antibiotics; and 14.9% died while admitted. Pneumococcal carriage was detected in 3/96 (3.1%) individuals tested by saliva RT-qPCR. Additionally, pneumococcus was detected in 14/127 (11.0%) individuals tested by UAD, and more commonly in severe than moderate COVID-19 [OR: 2.20; 95% CI: (0.72, 7.48)]; however, the numbers were small with a high degree of uncertainty. None of the UAD-positive individuals died. Conclusions: Pneumococcal lower respiratory tract infection (LRTI), as detected by positive UAD, occurred in patients hospitalized with COVID-19. Moreover, pneumococcal LRTI was more common in those with more serious COVID-19 outcomes. Future studies should assess how pneumococcus and SARS-CoV-2 interact to influence COVID-19 severity in hospitalized patients.

20.
Am J Kidney Dis ; 79(2): 257-267.e1, 2022 02.
Article in English | MEDLINE | ID: mdl-34710516

ABSTRACT

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is common in patients with coronavirus disease 2019 (COVID-19) and associated with poor outcomes. Urinary biomarkers have been associated with adverse kidney outcomes in other settings and may provide additional prognostic information in patients with COVID-19. We investigated the association between urinary biomarkers and adverse kidney outcomes among patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients hospitalized with COVID-19 (n=153) at 2 academic medical centers between April and June 2020. EXPOSURE: 19 urinary biomarkers of injury, inflammation, and repair. OUTCOME: Composite of KDIGO (Kidney Disease: Improving Global Outcomes) stage 3 AKI, requirement for dialysis, or death within 60 days of hospital admission. We also compared various kidney biomarker levels in the setting of COVID-19 versus other common AKI settings. ANALYTICAL APPROACH: Time-varying Cox proportional hazards regression to associate biomarker level with composite outcome. RESULTS: Out of 153 patients, 24 (15.7%) experienced the primary outcome. Twofold higher levels of neutrophil gelatinase-associated lipocalin (NGAL) (HR, 1.34 [95% CI, 1.14-1.57]), monocyte chemoattractant protein (MCP-1) (HR, 1.42 [95% CI, 1.09-1.84]), and kidney injury molecule 1 (KIM-1) (HR, 2.03 [95% CI, 1.38-2.99]) were associated with highest risk of sustaining primary composite outcome. Higher epidermal growth factor (EGF) levels were associated with a lower risk of the primary outcome (HR, 0.61 [95% CI, 0.47-0.79]). Individual biomarkers provided moderate discrimination and biomarker combinations improved discrimination for the primary outcome. The degree of kidney injury by biomarker level in COVID-19 was comparable to other settings of clinical AKI. There was evidence of subclinical AKI in COVID-19 patients based on elevated injury biomarker level in patients without clinical AKI defined by serum creatinine. LIMITATIONS: Small sample size with low number of composite outcome events. CONCLUSIONS: Urinary biomarkers are associated with adverse kidney outcomes in patients hospitalized with COVID-19 and may provide valuable information to monitor kidney disease progression and recovery.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Biomarkers , Creatinine , Humans , Lipocalin-2 , Prognosis , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...