Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Adv Drug Deliv Rev ; 210: 115321, 2024 Jul.
Article En | MEDLINE | ID: mdl-38679293

Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.


Drug Carriers , Theranostic Nanomedicine , Humans , Drug Carriers/chemistry , Theranostic Nanomedicine/methods , Nanoparticles , Animals , Drug Delivery Systems , Eye Diseases/drug therapy , Administration, Ophthalmic , Administration, Topical
2.
J Control Release ; 334: 453-462, 2021 06 10.
Article En | MEDLINE | ID: mdl-33961916

Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.


Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Administration, Intravaginal , Animals , Anti-HIV Agents/therapeutic use , Emtricitabine , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Mice , Tenofovir
...