Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 264: 115983, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38048695

ABSTRACT

Simple alkyl-sulfonylacetamides have potent antitubercular activity and significantly decrease mycolic acid levels in mycobacteria. Although these compounds were originally designed to inhibit the ketoacyl synthase domain of fatty acid synthase, structure-activity relationships and biochemical evidence do not fully support fatty acid synthase as the target. In 2004, an enzyme family involved in the activation and transfer of fatty acids as acyl-adenylates was identified in mycobacteria, separate from the universal acetyl-CoA carrier mechanism. These fatty acyl-AMP ligases (FAAL), encoded by the FadD family play important roles in the biosynthesis of mycolic acids along with fatty acid metabolism and are hypothesised here to be the molecular target of the sulfonylacetamides. Due to structural similarities with the ligase's natural substrate, it is believed these compounds are exerting action via competitive inhibition of these highly potent molecular targets. The primary aim of this investigation was to synthesize an extended library of sulfonylacetamide derivatives, building upon existing structural activity relations to validate the molecular mechanism with the aid of molecular modelling, while also attempting to explore novel structural isosteres for further drug design and development. Sulfonylacetamide derivatives were modified based on the putative molecular target resulting in derivatives with improved activities towards Mycobacteriumtuberculosis (H37Rv). The most active novel derivatives reported were 19, 22b, 22c and 46 displaying MIC90 levels of 1.4, 16.0, 13.0 and 5.9 µg/mL, respectively.


Subject(s)
Mycobacterium tuberculosis , Acetamides/pharmacology , Antitubercular Agents/pharmacology , Mycolic Acids/metabolism , Fatty Acids/metabolism , Fatty Acid Synthases
2.
Adv Drug Deliv Rev ; 151-152: 94-129, 2019.
Article in English | MEDLINE | ID: mdl-31513827

ABSTRACT

Many deadly infections are produced by microorganisms capable of sustained survival in macrophages. This reduces exposure to chemadrotherapy, prevents immune detection, and is akin to criminals hiding in police stations. Therefore, the use of glyco-nanoparticles (GNPs) as carriers of therapeutic agents is a burgeoning field. Such an approach can enhance the penetration of drugs into macrophages with specific carbohydrate targeting molecules on the nanocarrier to interact with macrophage lectins. Carbohydrates are natural biological molecules and the key constituents in a large variety of biological events such as cellular communication, infection, inflammation, enzyme trafficking, cellular migration, cancer metastasis and immune functions. The prominent characteristics of carbohydrates including biodegradability, biocompatibility, hydrophilicity and the highly specific interaction of targeting cell-surface receptors support their potential application to drug delivery systems (DDS). This review presents the 21st century development of carbohydrate-based nanocarriers for drug targeting of therapeutic agents for diseases localized in macrophages. The significance of natural carbohydrate-derived nanoparticles (GNPs) as anti-microbial drug carriers is highlighted in several areas of treatment including tuberculosis, salmonellosis, leishmaniasis, candidiasis, and HIV/AIDS.


Subject(s)
Anti-Infective Agents/therapeutic use , Carbohydrates/chemistry , Macrophages/drug effects , Nanoparticles/chemistry , Animals , Anti-Infective Agents/chemistry , Bacterial Infections/drug therapy , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Mycoses/drug therapy , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL