Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Water Res ; 258: 121791, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38830291

ABSTRACT

Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems.


Subject(s)
Disinfection , Lakes , Water Pollutants, Chemical , Lakes/chemistry , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Water Purification , Nutrients/analysis , Trihalomethanes/analysis , Nitrogen/analysis
2.
MethodsX ; 11: 102257, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37383622

ABSTRACT

We introduce OrbiFragsNets, a tool for automatic annotation of MS2 spectra generated by Orbitrap instruments, as well as the concepts of chemical consistency and fragments networks. OrbiFragsNets takes advantage of the specific confidence interval for each peak in every MS2 spectrum, which is an unclear idea across the high-resolution mass spectrometry literature. The spectrum annotations are expressed as fragments networks, a set of networks with the possible combinations of annotations for the fragments. The model behind OrbiFragsNets is briefly described here and explained in detail in the constantly updated manual available in the GitHub repository. This new approach in MS2 spectrum de novo automatic annotation proved to perform as good as well established tools such as RMassBank and SIRIUS.•A new approach on automatic annotation of Orbitrap MS2 spectra is introduced.•Possible spectrum annotation are described as independent consistent networks, with annotations for each fragment as nodes, and annotations for the mass difference between fragments as edges.•Annotation process is described as the selection of the most connected fragments network.

3.
Heliyon ; 9(3): e14253, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938411

ABSTRACT

Although we have extensive datasets on the location and typology of industries, we do not know much on their generated and discharged wastewater. This lack of information compromises the achievement of the sustainable development goals focused on water (Sustainable Development Goal 6) in Europe and globally. Thus, our goal was to assess to which degree the chemical composition of industrial wastewater could be estimated based on the industry's typology according to its International Standard Industrial Classification of All Economic Activities (ISIC) class. We collected wastewater effluent water samples from 60 industrial wastewater effluents (before any wastewater treatment process), accounting for 5 samples each of 12 ISIC classes, analyzed the composition of key contaminants (i.e. European Commission rated priority compounds and watchlist), and statistically assessed the similarities and differences amongst ISIC classes using ordination and random forest analyses. The results showed statistically significant linkages between most ISIC classes and the composition of produced wastewater. Among the analytical parameters measured, the random forest methodology allowed identifying a sub-set particularly relevant for classification or eventual contamination prediction based on ISIC class. This is an important applied research topic with strong management implications to (i) determine pollution emission caps for each individual ISIC class, (ii) define monitoring schemes to sample and analyze industrial wastewater, and (iii) enable predicting pollutant loads discharged in river basins with scarce information. These encouraging results urge us to expand our work into other ISIC classes and water quality parameters to draw a full picture of the relationship between ISIC classes and produced wastewater.

4.
J Hazard Mater ; 451: 131159, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36905908

ABSTRACT

N-nitrosamines (NAs), and N-nitrosodimethylamine (NDMA) in particular, are hazardous disinfection byproducts (DBPs) relevant when wastewater impacts drinking water sources and, in water reuse practices. Our study investigates the concentrations of NDMA and five additional NAs and their precursors in industrial wastewater effluents. Aiming to identify potential differences between industrial typologies, wastewaters from 38 industries belonging to 11 types of the UN International Standard Industrial Classification of All Economic Activities system (ISIC) were analysed. Results show that the presence of most NAs and their precursors cannot be linked to a specific industry type as these were in general very different within the classes. Nevertheless, N-nitrosomethylethylamine (NMEA) and N-nitrosopiperidine (NPIP) as well as precursors for N-nitrosodiethylamine (NDEA), NPIP and N-nitrosodibuthylamine (NDBA) could be rank with different concentrations between ISIC classes (p-value < 0.05). Specific industrial wastewater with notable high concentrations of NAs and their precursors were identified too. The effluents with the highest concentration of NDMA belong to the ISIC C2011 class (Manufacture of basic chemical), while the effluents with the highest concentration of NDMA precursors were from the ISIC C1511 class (Tanning and dressing of leather; dressing and dyeing of fur). Other relevant NAs found were NDEA in ISIC class B0810 (Quarrying of stone, sand, and clay) and ISIC class C2029 (Manufacture of other chemical products).

5.
Sci Total Environ ; 864: 161194, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36581289

ABSTRACT

In this study, cold atmospheric plasma (CAP) was explored as a novel advanced oxidation process (AOP) for water decontamination. Samples with high concentration aqueous solutions of Diclofenac sodium (DCF) and 4-Chlorobenzoic acid (pCBA) were treated by plasma systems. Atmospheric pressure plasma jets (APPJs) with a 1 pin-electrode and multi-needle electrodes (3 pins) configurations were used. The plasma generated using argon as working gas was touching a stationary liquid surface in the case of pin electrode-APPJ while for multi-needle electrodes-APPJ the liquid sample was flowing during treatment. In both configurations, a commercial RF power supply was used for plasma ignition. Measurement of electrical signals enabled precise determination of power delivered from the plasma to the sample. The optical emission spectroscopy (OES) of plasma confirmed the appearance of excited reactive species in the plasma, such as hydroxyl radicals and atomic oxygen which are considered to be key reactive species in AOPs for the degradation of organic pollutants. Treatments were conducted with two different volumes (5 mL and 250 mL) of contaminated water samples. The data acquired allowed calculation of degradation efficiency and energy yield for both plasma sources. When treated with pin-APPJ, almost complete degradation of 5 mL DCF occurred in 1 min with the initial concentration of 25 mg/L and 50 mg/L, whereas 5 mL pCBA almost degraded in 10 min at the initial concentration of 25 mg/L and 40 mg/L. The treatment results with multi-needle electrodes system confirmed that DCF almost completely degraded in 30 min and pCBA degraded about 24 % in 50 min. The maximum calculated energy yield for 50 % removal was 6465 mg/kWh after treatment of 250 mL of DCF aqueous solution utilizing the plasma recirculation technique. The measurements also provided an insight to the kinetics of DCF and pCBA degradation. Degradation products and pathways for DCF were determined using LC-MS measurements.

6.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500951

ABSTRACT

Fe2O3/TiO2 nanocomposites were fabricated via a facile impregnation/calcination technique employing different amounts iron (III) nitrate onto commercial TiO2 (P25 Aeroxide). The as-prepared Fe2O3/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDXS), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), electron impedance spectroscopy (EIS), photoluminescence spectroscopy (PL), and diffuse reflectance spectroscopy (DRS). As a result, 5% (w/w) Fe2O3/TiO2 achieved the highest photocatalytic activity in the slurry system and was successfully immobilized on glass support. Photocatalytic activity under visible-light irradiation was assessed by treating pharmaceutical amoxicillin (AMX) in the presence and absence of additional oxidants: hydrogen peroxide (H2O2) and persulfate salts (PS). The influence of pH and PS concentration on AMX conversion rate was established by means of statistical planning and response surface modeling. Results revealed optimum conditions of [S2O82-] = 1.873 mM and pH = 4.808; these were also utilized in presence of H2O2 instead of PS in long-term tests. The fastest AMX conversion possessing a zero-order rate constant of 1.51 × 10-7 M·min-1 was achieved with the photocatalysis + PS system. The AMX conversion pathway was established, and the evolution/conversion of formed intermediates was correlated with the changes in toxicity toward Vibrio fischeri. Reactive oxygen species (ROS) scavenging was also utilized to investigate the AMX conversion mechanism, revealing the major contribution of photogenerated h+ in all processes.

7.
Chemosphere ; 303(Pt 2): 135087, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35623424

ABSTRACT

The generation of disinfection by-products during water chlorination is a major concern in water treatment, given the potential health risks that these substances may pose. In particular, nitrogen-containing DBPs are believed to have greater toxicological significance than carbon-based DBPs. Hence, high performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) in positive mode was employed to identify new non-volatile nitrogen containing disinfection by-products (DBPs) and to assess their presence in potable water. Nine water samples were taken in the Llobregat river, in the context of a water reuse trial, near the catchment of a drinking water treatment plant (DWTP) in 2019. River samples were disinfected with chlorine under controlled formation potential tests conditions and analysed with a non-target approach. The peak lists of raw and chlorinated samples were compared exhaustively, resulting in an extensive list of 495 DBPs that include bromine and/or chlorine atoms. 172 of these species were found frequently, in three or more chlorinated samples. The empirical formulae of these DBPs were unambiguously annotated on the basis of accurate m/z measurements, isotopic patterns and common heuristic rules. Most of the annotated species (310) contained bromide, which is consistent with the relatively high bromide content of the Llobregat basin (>0.3 mg/l). Drinking water samples were taken at the outlet of the DWTP during the same sampling period. According to their analysis, a large portion of the DBPs detected after the formation potential tests do not reach real-life drinking water, which suggests that the treatment train successfully removes a significant fraction of DBP precursors. However, 131 DBPs could still be detected in the final product water. A larger sampling was carried in the Barcelona water distribution network, during six consecutive weeks, and it revealed the presence of 78 halogenated DBPs in end-consumer water, most of which were nitrogen-containing. MS/MS fragmentation and retention times were employed to tentatively suggest molecular structure for these recalcitrant DBPs.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Bromides/analysis , Chlorine/analysis , Disinfectants/chemistry , Disinfection/methods , Drinking Water/analysis , Halogenation , Nitrogen/analysis , Rivers/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Purification/methods
8.
Environ Pollut ; 289: 117927, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426209

ABSTRACT

The occurrence of veterinary antibiotics and hydro-chemical parameters in eleven natural springs in a livestock production area is evaluated, jointly with the characterization of their DOM fingerprint by Orbitrap HRMS. Tetracycline and sulfonamide antibiotics were ubiquitous in all sites, and they were detected at low ng L-1 concentrations, except for doxycycline, that was present at µg L-1 in one location. DOM analysis revealed that most molecular formulas were CHO compounds (49 %-68 %), with a remarkable percentage containing nitrogen and sulphur (16 %-23 % and 11 %-24 %, respectively). Major DOM components were phenolic and highly unsaturated compounds (~90 %), typical for soil-derived organic matter, while approximately 11 % were unsaturated aliphatic, suggesting that springs may be susceptible to anthropogenic contamination sources. Comparing the DOM fingerprint among sites, the spring showing the most different profile was the one with surface water interaction and characterized by having lower CHO and higher CHOS formulas and aliphatic compounds. Correlations between antibiotics and DOM showed that tetracyclines positively correlate with unsaturated oxygen-rich substances, while sulfonamides relate with aliphatic and unsaturated oxygen-poor compounds. This indicates that the fate of different antibiotics will be controlled by the type of DOM present in groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents , Environmental Monitoring , Soil , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 760: 143881, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341619

ABSTRACT

High resolution mass spectrometry (HRMS) was used to investigate the dissolved organic matter (DOM) profile of a reclamation water trial performed in the Llobregat River (Spain) during summer 2019. 23 water samples (including tertiary effluents, surface river and drinking water), taken during five sampling campaigns, were analyzed and their van Krevelen diagrams were compared. The reclaimed water fingerprint was substantially different from the natural profile of the river, showing a higher number of heteroatomic signals (i.e. CHON, CHOS and CHONS) and the presence of high-intensity S-containing features. As a result, reclaimed water discharge introduced substantial changes in the signature of the lignin-like and soot-like compositional-spaces of the river DOM fingerprint. However, the effect on the drinking water fingerprint was, ultimately, very limited. Only a limited number of features (up to 34) were detected as exclusively emitted with the reclaimed water. During the second phase of the trial, the tertiary effluent was chlorinated for disinfection purposes. This process triggered the unexpected formation of a myriad of new features along the Llobregat River. Notably, 109 brominated/chlorinated features were detected, probably generated as a consequence of the photochemical decay of the emitted chloramines and their free-radical reaction with DOM, and three of them persisted in the final drinking water. The formation of halogenated species in situ in the Llobregat River entails uncertainty at ecological and water treatment levels and should be studied carefully to fully disclose the risks associated to wastewater effluent disinfection.

10.
J Hazard Mater ; 407: 124346, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33160783

ABSTRACT

In summer 2019, a full-scale trial was carried out to investigate the effects in drinking water quality when tertiary treated wastewater was discharged into the Llobregat River upstream of the intake of one of the major drinking water treatment plants of Barcelona and its metropolitan area. Two scenarios were investigated, i.e. discharging the reclaimed water with and without chemical disinfection with chlorine. This study investigates the concentration of N-nitrosodimethylamine (NDMA) as the specific disinfection conditions employed in this trial may favor its formation. To this aim, both NDMA and NDMA formation potential, were measured. The river contained NDMA at very low concentrations, but the concentration of NDMA precursors was already high. The NDMA concentration was reduced from discharge to the river to drinking water intake probably due to a combined effect of dilution and photolysis. The formation potential was also reduced probably due to dilution and biodegradation. The concentration of NDMA in the drinking water was always low (<7.3 ng/L), although the formation potential was above 10 ng/L in one sample. Dissolved organic matter characterization by high resolution mass spectrometry revealed differences between the nature of the organic matter in the river before and after reclaimed water discharge.

11.
Environ Sci Technol ; 54(14): 9062-9073, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32589847

ABSTRACT

Antibiotic transformation products (TPs) generated during water treatment can be considered as an environmental concern, since they can retain part of the bioactivity of the parent compound. Effect-directed analysis (EDA) was applied for the identification of bioactive intermediates of azithromycin (AZI) and ciprofloxacin (CFC) after water chlorination. Fractionation of samples allowed the identification of bioactive intermediates by measuring the antibiotic activity and acute toxicity, combined with an automated suspect screening approach for chemical analysis. While the removal of AZI was in line with the decrease of bioactivity in chlorinated samples, an increase of bioactivity after complete removal of CFC was observed (at >0.5 mgCl2/L). Principal component analysis (PCA) revealed that some of the CFC intermediates could contribute to the overall toxicity of the chlorinated samples. Fractionation of bioactive samples identified that the chlorinated TP296 (generated from the destruction of the CFC piperazine ring) maintained 41%, 44%, and 30% of the antibiotic activity of the parent compound in chlorinated samples at 2.0, 3.0, and 4.0 mgCl2/L, respectively. These results indicate the spectrum of antibacterial activity can be altered by controlling the chemical substituents and configuration of the CFC structure with chlorine. On the other hand, the potential presence of volatile DBPs and fractionation losses do not allow for tentative confirmation of the main intermediates contributing to the acute toxic effects measured in chlorinated samples. Our results encourage further development of new and advanced methodologies to study the bioactivity of isolated unknown TPs to understand their hazardous effects in treated effluents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/toxicity , Chlorine , Disinfection , Halogenation , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
Water Res ; 176: 115743, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32272321

ABSTRACT

In order to understand and minimize the formation of halogenated disinfection by-products (DBPs), it is important to investigate how dissolved organic matter (DOM) contributes to their generation. In the present study, we analysed the DOM profile of water samples from the Barcelona catchment area by high resolution mass spectrometry (HRMS) and we studied the changes after chlorination. Chlorination produced significant changes in the DOM, decreased the average m/z and Kendrick mass defect (KMD) of their spectra and decreased the number and abundance of lignin-like features. The Van Krevelen (VK) fingerprint exhibited several noticeable changes, including the appearance of highly oxidized peaks in the tannin-like region (average O/C, 0.78 ± 0.08), the appearance of features with low H/C and the disappearance of more than half of the lipids-like features. Up to 657 halogenated peaks were generated during sample chlorination, most of which in the condensed hydrocarbons-like and the lignin-like region of the VK diagram. Around 200 features were found to be strongly correlated (ρ ≥ 0.795) to the formation potential of trihalomethanes (THMs) and 5 were correlated with the formation potential of haloacetonitrile (HANs). They all were plotted in the lignin fraction of the VK diagram, but both groups of features exhibited different nitrogen content: those features related to HANs FP had at least one nitrogen atoms in their structures, whilst those related to THMs did not.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Mass Spectrometry , Trihalomethanes
13.
Water Res ; 175: 115682, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32193028

ABSTRACT

This study investigates the potential of fluorescence excitation/emission matrices (EEM) measurement as a tool to predict N-Nitrosodimethylamine (NDMA) formation in water reuse applications. In particular, samples from a pilot-scale membrane biological reactor (MBR) followed by nanofiltration (NF) advanced water treatment plant, are used for the study. Concentrations of both, specific NDMA precursors and NDMA formation potential (FP) are correlated with different EEM peaks. The specific precursors investigated are: erythromycin, azithromycin, clarithromycin, venlafaxine, o-desmethylvenlafaxine, ranitidine and citalopram, while the NDMA FP is conventionally measured by the NDMA formation potential test. EEM peaks investigated are obtained by fluorescence regional integration as well as by the peak picking method generating I1, I2, I3, I4, and I5 peaks. Results showed that protein-like materials are correlated with the bulk NDMA FP and specific NDMA precursors. Additionally, selected fluorescence peaks such as I1, I2 and I4 are strongly correlated with NDMA precursors throughout the MBR-NF pilot plant. The removal of NDMA precursors and EEM peaks also correlated well (R2 > 0.8). This data shows that fluorescence EEM can be a promising tool to monitor the concentration of NDMA precursors and their removal in water reuse application.


Subject(s)
Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Fluorescence , Wastewater
14.
Sci Total Environ ; 685: 380-391, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176223

ABSTRACT

Water treatments that provide efficient removal of organic and inorganic disinfection by-product (DBP) precursors across variable natural organic matter (NOM) sources are desirable. Treatments that effectively remove inorganic DBP precursors such as bromide, which significantly shift the speciation of DBP formation towards more toxic DBPs, are of particular interest and have been less investigated. This study characterised NOM isolated from three major drinking water sources in Southeast Queensland (SEQ), Australia, and compared it to the International Humic Substances Society (IHSS) Suwannee River NOM isolate (SR) in terms of DBP precursor removal treatments and DBP formation. Each NOM isolate was used to make synthetic water samples with otherwise identical water quality parameters, that were treated with enhanced coagulation (EC) or EC followed by; anion exchange (MIEX® resin), powdered activated carbon (PAC), granular activated carbon (GAC) or silver impregnated activated carbon (SIAC), to investigate the removal of DBP precursors (bromide and DOC), minimisation of DBPs, as well as the change in specific chlorine demand. EC/SIAC treatment was the most effective method of DBP control studied, due to the efficient simultaneous NOM and bromide adsorption of the SIAC (99 ±â€¯1% bromide removal regardless of NOM source). This treatment also resulted in >92% removal of each of the measured DBPs across all NOM sources, with the exception of DBAN and 1,1-DCP, which achieved >80% removal across all NOM sources. Increases in tribromomethane (TBM) and dibromoacetonitrile (DBAN) formation were observed after all other treatment/NOM-isolate combinations, due to increased Br:DOC ratio after treatment, whereas chlorinated DBPs were generally well-controlled by all treatment/NOM-isolate combinations. Differences in reactivity of the individual NOM isolates were found to be related to both the origin of the isolate and the treatment employed, however, bromide removal capacity for each treatment was independent of NOM source.


Subject(s)
Environmental Monitoring , Humic Substances/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Australia , Disinfectants/analysis , Disinfection , Drinking Water/chemistry , Water Pollutants, Chemical/standards
15.
Sci Total Environ ; 670: 1019-1027, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31018417

ABSTRACT

N-nitrosodimethylamine (NDMA) is a disinfection byproduct that has been classified as probable human carcinogen by the US Environmental Protection Agency. According to the published literature, natural dissolved organic matter (DOM) can be a source of NDMA precursors in drinking water. New advances in chemical characterization of DOM with high resolution mass spectrometry (HRMS) are allowing researchers to understand these ultra-complex mixtures. The objective of this study is to investigate analytical methodologies based on HRMS to explore NDMA formation from natural waters. To this aim, different waters from drinking water reservoirs in Spain containing NDMA precursors (quantified by means of NDMA formation potential) in concentrations between 17 and 60 ng/L have been studied. The workflow includes DOM solid-phase extraction and Orbitrap analysis with and without chromatographic separation. Here, we show that the molecular composition of DOM across the studied drinking water reservoirs is correlated with the NDMA formation potential. In particular, we found that NDMA formation potential is associated with compounds with high hydrogen saturation (H/C ≥ 1.5), corresponding also to reservoirs with higher background nutrient concentrations and wastewater indicators. Further chromatographic fractionation did not allow better definition of these possible precursors as they were present in different fractions of the chromatogram, suggesting that they were isomerically complex.

16.
Chemosphere ; 220: 176-184, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30583210

ABSTRACT

Alternative disinfection technologies may overcome some of the limitations of conventional treatment applied in swimming pools: chlorine-resistant pathogens (e.g. Cryptosporidium oocysts and Giardia cysts) and the formation of chlorinated disinfection byproducts. In this paper, results of full scale validation of an alternative disinfection technology UVOX Redox® (hereinafter referred to as UVOX) that combines ozonation and UV irradiation are presented. The performance was assessed in terms of microbial inactivation, disinfection byproduct formation and micropollutant removal. UVOX was able to achieve 1.4-2.7 log inactivation of Bacillus subtilis spores at water flows between 20 and 76 m³/h. Lower formation of trichloromethane and dichloroacetic acid was observed with UVOX followed by chlorination when compared to chlorination alone. However, due to the use of ozone and the presence of bromide in the pool water, the formation of trihalomethanes and haloacetic acids shifted to more brominated byproducts. Chlorine alone was able to remove the target micropollutants: acetaminophen, atenolol, caffeine, carbamazepine, estrone, estradiol, and venlafaxine (>97% removal) after 24 h, with the exception of ibuprofen (60% removal). The application of UVOX in chlorinated water enhanced the removal of ibuprofen. The application of UVOX could lower the usage of chlorine to the level that provides an adequate residual disinfection effect.


Subject(s)
Bacillus subtilis/drug effects , Chlorine/chemistry , Disinfection/methods , Ozone , Swimming Pools , Ultraviolet Rays , Water Purification/methods , Halogenation , Microbial Viability/radiation effects , Oxidation-Reduction , Water Pollutants, Chemical/analysis
17.
Environ Pollut ; 246: 346-356, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30577003

ABSTRACT

Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential. Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.


Subject(s)
Desvenlafaxine Succinate/metabolism , Dimethylnitrosamine/metabolism , Trametes/metabolism , Venlafaxine Hydrochloride/metabolism , Wastewater/analysis , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Wastewater/microbiology , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 640-641: 31-40, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29852445

ABSTRACT

Parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrices (EEMs) was used to investigate the organic matter and DBP formation characteristics of untreated, primary treated (enhanced coagulation; EC) and secondary treated synthetic waters prepared using a Suwannee River natural organic matter (SR-NOM) isolate. The organic matter was characterised by four different fluorescence components; two humic acid-like (C1 and C2) and two protein-like (C3 and C4). Secondary treatment methods tested, following EC treatment, were; powdered activated carbon (PAC), granular activated carbon (GAC), 0.1% silver-impregnated activated carbon (SIAC), and MIEX® resin. Secondary treatments were more effective at removing natural organic matter (NOM) and fluorescent DBP-precursor components than EC alone. The formation of a suite of 17 DBPs including chlorinated, brominated and iodinated trihalomethanes (THMs), dihaloacetonitriles (DHANs), chloropropanones (CPs), chloral hydrate (CH) and trichloronitromethane (TCNM) was determined after chlorinating water sampled before and after each treatment step. Regression analysis was used to investigate the relationship between peak component fluorescence intensity (FMAX), DBP concentration and speciation, and more commonly used aggregate parameters such as DOC, UV254 and SUVA254. PARAFAC component 1 (C1) was in general a better predictor of DBP formation than other aggregate parameters, and was well correlated (R ≥ 0.80) with all detected DBPs except dibromochloromethane (DBCM) and dibromoacetonitrile (DBAN). These results indicate that the fluorescence-PARAFAC approach could provide a robust analytical tool for predicting DBP formation, and for evaluating the removal of NOM fractions relevant to DBP formation during water treatment.


Subject(s)
Disinfectants/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Water Purification , Disinfection , Factor Analysis, Statistical
19.
Water Res ; 108: 451-461, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27908452

ABSTRACT

Dissolved organic nitrogen (DON) is an emerging concern in oxidative water treatment because it exerts oxidant demand and may form nitrogenous oxidation/disinfection by-products. In this study, we investigated the reactions of ozone with DON with a special emphasis on the formation of nitrate (NO3-) and ammonium (NH4+). In batch ozonation experiments, the formation of NO3- and NH4+ was investigated for natural organic matter standards, surface water, and wastewater effluent samples. A good correlation was found between NO3- formation and the O3 exposure (R2 > 0.82) during ozonation of both model DON solutions and real water samples. To determine the main precursor of NO3-, solutions composed of tannic acid and model compounds with amine functional groups were ozonated. The NO3- yield during ozonation was significantly higher for glycine than for trimethylamine and dimethylamine. Experiments with glycine also showed that NO3- was formed via an intermediate with a second-order rate constant of 7.7 ± 0.1 M-1s-1 while NH4+ was formed by an electron-transfer mechanism with O3 as confirmed from a hydroxyl radical (OH) yield of 24.7 ± 1.9%. The NH4+ concentrations, however, were lower than the OH yield (0.03 mol NH4+/mol OH) suggesting other OH-producing reactions that compete with NH4+ formation. This study concludes that NO3- formation during ozonation of DON is induced by an oxygen-transfer to nitrogen forming hydroxylamine and oxime, while NH4+ formation is induced by electron-transfer reactions involving C-centered radicals and imine intermediates.


Subject(s)
Ammonium Compounds , Nitrogen , Kinetics , Ozone , Water Pollutants, Chemical , Water Purification
20.
Water Res ; 106: 550-561, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27771605

ABSTRACT

Ozonation is known to generate biodegradable organic matter, which is typically reduced by biological filtration to avoid bacterial regrowth in distribution systems. Post-chlorination generates halogenated disinfection byproducts (DBPs) but little is known about the biodegradability of their precursors. This study determined the effect of ozonation and biofiltration conditions, specifically ozone exposure and empty bed contact time (EBCT), on the control of DBP formation potentials in drinking water. Ozone exposure was varied through addition of H2O2 during ozonation at 1 mgO3/mgDOC followed by biological filtration using either activated carbon (BAC) or anthracite. Ozonation led to a 10% decrease in dissolved organic carbon (DOC), without further improvement from H2O2 addition. Raising H2O2 concentrations from 0 to 2 mmol/mmolO3 resulted in increased DBP formation potentials during post-chlorination of the ozonated water (target Cl2 residual after 24 h = 1-2 mg/L) as follows: 4 trihalomethanes (THM4, 37%), 8 haloacetic acids (HAA8, 44%), chloral hydrate (CH, 107%), 2 haloketones (HK2, 97%), 4 haloacetonitriles (HAN4, 33%), trichloroacetamide (TCAM, 43%), and adsorbable organic halogen (AOX, 27%), but a decrease in the concentrations of 2 trihalonitromethanes (THNM2, 43%). Coupling ozonation with biofiltration prior to chlorination effectively lowered the formation potentials of all DBPs including CH, HK2, and THNM2, all of which increased after ozonation. The dynamics of DBP formation potentials during BAC filtration at different EBCTs followed first-order reaction kinetics. Minimum steady-state concentrations were attained at an EBCT of about 10-20 min, depending on the DBP species. The rate of reduction in DBP formation potentials varied among individual species before reaching their minimum concentrations. CH, HK2, and THNM2 had the highest rate constants of between 0.5 and 0.6 min-1 followed by HAN4 (0.4 min-1), THM4 (0.3 min-1), HAA8 (0.2 min-1), and AOX (0.1 min-1). At an EBCT of 15 min, the reduction in formation potential for most DBPs was less than 50% but was higher than 70% for CH, HK2, and THNM2. The formation of bromine-containing DBPs increased with increasing EBCT, most likely due to an increase in Br-/DOC ratio. Overall, this study demonstrated that the combination of ozonation and biofiltration is an effective approach to mitigate DBP formation during drinking water treatment.


Subject(s)
Drinking Water , Hydrogen Peroxide , Disinfection , Ozone , Trihalomethanes , Water Pollutants, Chemical , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...