Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Total Environ ; 944: 173747, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38838999

The escalating production and improper disposal of petrochemical-based plastics have led to a global pollution issue with microplastics (MPs), which pose a significant ecological threat. Biobased and biodegradable plastics are believed to mitigate plastic pollution. However, their environmental fate and toxicity remain poorly understood. This study compares the in vivo effects of different types of MPs, poly(butylene adipate-co-terephthalate) as a biodegradable plastic, polylactic acid (PLA) as a biobased plastic, ß-cyclodextrin-grafted PLA as a modified biobased plastic, and low density polyethylene as the reference petrochemical-based plastic, on the key aquatic primary consumer Diaphanosoma celebensis. Exposure to MPs resulted in significant reproductive decline, with comparable effects observed irrespective of MP type or concentration. Exposure to MPs induced distinct responses in redox stress, with transcriptional profiling revealing differential gene expression patterns that indicate varied cellular responses to different types of MPs. ATP-binding cassette transporter activity assays demonstrated altered efflux activity, mainly in response to modified biobased and biodegradable MPs. Overall, this study highlights the comparable in vivo and in vitro effects of biobased, biodegradable, and petrochemical-based MPs on aquatic primary consumers, highlighting their potential ecological implications.

2.
Carbohydr Polym ; 295: 119840, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35988996

Surface modification of cellulose nanocrystals (CNC) by organocatalysed grafting from ring-opening polymerization (ROP) of trimethylene carbonate was investigated. Organocatalysts including an amidine (DBU), a guanidine (TBD), an amino-pyridine (DMAP) and a phosphazene (BEMP) were successfully assessed for this purpose, with performances in the order TBD > BEMP > DMAP, DBU. The grafting ratio can be tuned by varying the experimental parameters, with the highest grafting of 74 % by weight obtained under mild conditions, i.e at room temperature in tetrahydrofuran with a low amount of catalyst. This value is much higher than that of typical ring opening polymerizations of cyclic esters initiated from the surface of cellulose nanoparticles. Additionally, DSC analysis of the modified material revealed the presence of a glass transition temperature, indicative of a sufficient graft length to display polymeric behaviour. This is, to our knowledge, the first example of cellulose nanocrystals grafted with polycarbonate chains.


Cellulose , Nanoparticles , Carbonates , Cellulose/chemistry , Nanoparticles/chemistry , Polymerization , Polymers/chemistry
3.
Molecules ; 27(3)2022 Feb 06.
Article En | MEDLINE | ID: mdl-35164347

Cyclodextrins (CDs) are cyclic oligosaccharides used in many fields. Grafting polymers onto CDs enables new structures and applications to be obtained. Polylactide (PLA) is a biobased, biocompatible aliphatic polyester that can be grafted onto CDs by -OH-initiated ring-opening polymerization. Using 4-dimethylaminopyridine (DMAP) as an organocatalyst, a quantitative functionalization is reached on native α-, ß-, γ- and 2,3-dimethyl- ß-cyclodextrins. Narrow molecular weight distributions are obtained with the native CDs (dispersity < 1.1). The DMAP/ß-CD combination is used as a case study, and the formation of an inclusion complex (1/1) is shown for the first time in the literature, which is fully characterized by NMR. The inclusion of DMAP into the cavity occurs via the secondary rim of the ß-CD and the association constant (Ka) is estimated to be 88.2 M-1. Its use as an initiator for ring-opening polymerization leads to a partial functionalization efficiency, and thus a more hydrophilic ß-CD-PLA conjugate than that obtained starting from native ß-CD. Polymerization results including also the use of the adamantane/ß-CD inclusion complex as an initiator suggest that inclusion of the DMAP catalyst into the CD may not occur during polymerization reactions. Rac-lactide does not form an inclusion complex with ß-CD.

4.
Environ Sci Pollut Res Int ; 29(1): 271-283, 2022 Jan.
Article En | MEDLINE | ID: mdl-34523096

We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary ß-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated ß-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS- and CD(OMe)IL+PSS-) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.


Cyclodextrins , Ionic Liquids , beta-Cyclodextrins , Polymers , Renal Dialysis , Water
5.
Carbohydr Polym ; 254: 117399, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33357889

Starch based materials are attractive bio-based alternative to fully synthetic polymers. Native starch has however limited thermoprocessability and properties and must be modified. In order to improve the properties of starch-graft-poly(butyl-acrylate-co-styrene) copolymers via a process as green as possible, we report herein a new method for the dual functionalization of the polysaccharide via a one pot one step reaction in aqueous medium combining free radical polymerizations and ring-opening chemistry. Poly(butyl acrylate) or poly(butyl acrylate-co-styrene) (ca. 60 000 g/mol) and oligo(ε-caprolactone) were grafted on starch with a grafting percentage up to 75 %. The copolymers show two glass transition temperatures: one around 55-60 °C related to starch and a second attributed to the grafted vinyl polymers, from -46 °C to 20 °C depending on butyl acrylate/styrene ratio. The resulting dual functionalized materials exhibit excellent mechanical properties, with elongation at break in the range 20-210 %, while single functionalized starch shows less than 5 %.


Polymerization , Starch/chemistry , Water/chemistry , Acrylates/chemistry , Acrylic Resins/chemistry , Caproates/chemistry , Free Radicals/chemistry , Lactones/chemistry , Polystyrenes/chemistry , Transition Temperature , Vinyl Compounds/chemistry
6.
Polymers (Basel) ; 12(9)2020 Aug 24.
Article En | MEDLINE | ID: mdl-32847050

Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. As a case study, we compare herein bulk and solution polycondensation of 1,6-hexanediol and diethyl adipate catalyzed by an immobilized lipase from Candida antarctica. The influence of various parameters including time, temperature, enzyme loading, and vacuum was assessed in the frame of a two-step polymerization with the help of response surface methodology, a statistical technique that investigates relations between input and output variables. Results in solution (diphenyl ether) and bulk conditions showed that a two-hour reaction time was enough to allow adequate oligomer growth for the first step conducted under atmospheric pressure at 100 °C. The number-average molecular weight (Mn) achieved varied between 5000 and 12,000 g·mol-1 after a 24 h reaction and up to 18,500 g∙mol-1 after 48 h. The statistical analysis showed that vacuum was the most influential factor affecting the Mn in diphenyl ether. In sharp contrast, enzyme loading was found to be the most influential parameter in bulk conditions. Recyclability in bulk conditions showed a constant Mn of the polyester over three cycles, while a 17% decrease was noticed in solution. The following work finally introduced a statistical approach that can adequately predict the Mn of poly(hexylene adipate) based on the choice of parameter levels, providing a handy tool in the synthesis of polyesters where the control of molecular weight is of importance.

7.
Chem Commun (Camb) ; 56(58): 8067-8070, 2020 Jul 21.
Article En | MEDLINE | ID: mdl-32542254

Organocatalysis has provided new tools for making block copolymers, in particular active species able to polymerize monomers of different chemical nature such as cyclic esters, cyclic carbonates and epoxides. We report herein the first example of an organocatalytic active species able to polymerize sequentially a cyclic ester, ε-decalactone, and a vinyl monomer, methyl methacrylate. The resulting block copolymer shows the properties of thermoplastic elastomers.

...