Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Stem Cell Res ; 44: 101733, 2020 04.
Article in English | MEDLINE | ID: mdl-32151951

ABSTRACT

IPSC line RCPCMi004-A was generated from skin fibroblasts collected from a male patient with early onset Parkinson's disease. The patient carries a heterozygous deletion of the exon 2 of PARK2 gene. The reprogramming of fibroblasts was performed with Sendai viruses containing Oct-4, Sox-2, Klf-4 and c-Myc. Pluripotency was confirmed by immunofluorescence, RT-PCR, and formation of embryoid bodies. The RCPCMi004-A cell line carries the same deletion in PARK2 gene. The RCPCMi004-A cell line can be used to model Parkinson's disease in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Cell Differentiation , Cell Line , Embryoid Bodies , Exons/genetics , Humans , Male , Parkinson Disease/genetics
2.
Mol Gen Mikrobiol Virusol ; (1): 3-4, 2014.
Article in Russian | MEDLINE | ID: mdl-24757835

ABSTRACT

The Parkinson disease (PD) is a severe neurological disorder. Diverse genetic systems and environmental factors are involved in the pathogenesis of this disease. However, despite extensive research into the disease, its causes are not fully elucidated, and the exact spectrum of genes and mutations involved in the development of hereditary forms of PD has not been fully clarified yet. The present work is devoted to the analysis of mutations that lead to the development of monogenic forms of PD in patients with suspected autosomal dominant form of PD using Multiplex Ligation-dependent Probe Amplification (MLPA). We have identified several mutations (G2019S in LRRK2, heterozygous deletions of 2-3, 3-4 exons and heterozygous duplication of 2-4 exons in PARK2, deletion of 3 exon in PARK7) that lead to the development of PD in only 7 people out of 70 (18.4%), which suggests the need for further search of new mutations, for example, using exome sequencing. In the future it will help to develop the molecular genetic tests for early preclinical diagnosis and risk evaluation of the development of PD, and to understand better the causes and mechanisms of this disease.


Subject(s)
Mutation, Missense , Parkinsonian Disorders/genetics , Ubiquitin-Protein Ligases/genetics , Exons , Female , Gene Deletion , Gene Duplication , Heterozygote , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL