Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 9: 1083255, 2022.
Article in English | MEDLINE | ID: mdl-36699328

ABSTRACT

Gilthead sea bream is a highly cultured marine fish throughout the Mediterranean area, but new and strict criteria of welfare are needed to assure that the intensification of production has no negative effects on animal farming. Most welfare indicators are specific to a given phase of the production cycle, but others such as the timing of puberty and/or sex reversal are of retrospective value. This is of particular relevance in the protandrous gilthead sea bream, in which the sex ratio is highly regulated at the nutritional level. Social and environmental factors (e.g., contaminant loads) also alter the sex ratio, but the contribution of the genetic component remains unclear. To assess this complex issue, five gilthead sea bream families representative of slow/intermediate/fast growth were grown out with control or a plant-based diet in a common garden system from early life to the completion of their sexual maturity in 3-year-old fish. The plant-based diet highly enhanced the male-to-female sex reversal. This occurred in parallel with the progressive impairment of growth performance, which was indicative of changes in nutrient requirements as the result of the different energy demands for growth and reproduction through development. The effect of a different nutritional and genetic background on the reproductive performance was also assessed by measurements of circulating levels of sex steroids during the two consecutive spawning seasons, varying plasma levels of 17ß-estradiol (E2) and 11-ketotestosterone (11-KT) with age, gender, diet, and genetic background. Principal component analysis (PCA) of 3-year-old fish displayed a gradual increase of the E2/11-KT ratio from males to females with the improvement of nutritional/genetic background. Altogether, these results support the use of a reproductive tract scoring system for leading farmed fish toward their optimum welfare condition, contributing to improving the productivity of the current gilthead sea bream livestock.

2.
Gen Comp Endocrinol ; 275: 82-93, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30738863

ABSTRACT

This study evaluated the impact of continuous light (LL) within the photolabile period on advanced puberty in juvenile male European sea bass. The exposure to an LL regime for 1 month, from August 15 to September 15 (LLa/s), was compared to a constant simulated natural photoperiod (NP) and constant continuous light conditions year-round (LLy). Somatic growth, hormone plasma levels, rates of testicular maturation and spermiation, as well as the mRNA levels of some reproductive genes were analyzed. Our results demonstrated that both LLa/s and LLy treatments, which include LL exposure during the photolabile period, were highly effective in inhibiting the gametogenesis process that affects testicular development, and clearly reduced the early sexual maturation of males. Exposure to an LL photoperiod affected body weight and length of juvenile fish during early gametogenesis and throughout the first year of life. Interestingly, LL induced bi-weekly changes in some reproductive factors affecting Gnrh1 and Gnrh2 content in the brain, and also reduced pituitary fshß expression and plasmatic levels of 11-KT, E2, Fsh throughout early gametogenesis. We suggest that low levels of E2 in early September in the LL groups, which would be concomitant with the reduced number of spermatogonial mitoses in these groups, might indicate a putative role for estrogens in spermatogonial proliferation during the early gonadal development of this species. Furthermore, a significant decrease in amh expression was observed, coinciding with low plasma levels of 11-KT under LL regimes, which is consistent with the idea that this growth factor may be crucial for the progress of spermatogenesis in male sea bass.


Subject(s)
Bass/growth & development , Lighting , Photoperiod , Reproduction/physiology , Sexual Maturation/physiology , Animals , Bass/blood , Follicle Stimulating Hormone, beta Subunit/blood , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/blood , Male , Protein Precursors/blood , Sex Differentiation/physiology , Spermatogenesis/physiology , Time Factors
3.
J Steroid Biochem Mol Biol ; 178: 234-242, 2018 04.
Article in English | MEDLINE | ID: mdl-29288793

ABSTRACT

The numerous estrogen functions reported across vertebrates have been classically explained by their binding to specific transcription factors, the nuclear estrogen receptors (ERs). Rapid non-genomic estrogenic responses have also been recently identified in vertebrates including fish, which can be mediated by membrane receptors such as the G protein-coupled estrogen receptor (Gper). In this study, two genes for Gper, namely gpera and gperb, were identified in the genome of a teleost fish, the European sea bass. Phylogenetic analysis indicated they were most likely retained after the 3R teleost-specific whole genome duplication and raises questions about their function in male and female sea bass. Gpera expression was mainly restricted to brain and pituitary in both sexes while gperb had a widespread tissue distribution with higher expression levels in gill filaments, kidney and head kidney. Both receptors were detected in the hypothalamus and pituitary of both sexes and significant changes in gpers expression were observed throughout the annual reproductive season. In female pituitaries, gpera showed an overall increase in expression throughout the reproductive season while gperb levels remained constant. In the hypothalamus, gpera had a higher expression during vitellogenesis and decreased in fish entering the ovary maturation and ovulation stage, while gperb expression increased at the final atresia stage. In males, gpers expression was constant in the hypothalamus and pituitary throughout the reproductive cycle apart from the mid- to late testicular development stage transition when a significant up-regulation of gpera occurred in the pituitary. The differential sex, seasonal and subtype-specific expression patterns detected for the two novel gper genes in sea bass suggests they may have acquired different and/or complementary roles in mediating estrogens actions in fish, namely on the neuroendocrine control of reproduction.


Subject(s)
Bass/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Phylogeny , Receptors, Estrogen/metabolism , Reproduction , Amino Acid Sequence , Animals , Membrane Proteins/genetics , Receptors, Estrogen/genetics , Sequence Homology
4.
Article in English | MEDLINE | ID: mdl-27164487

ABSTRACT

Previous works on European sea bass have determined that long-term exposure to restrictive feeding diets alters the rhythms of some reproductive/metabolic hormones, delaying maturation and increasing apoptosis during gametogenesis. However, exactly how these diets affect key genes and hormones on the brain-pituitary-gonad (BPG) axis to trigger puberty is still largely unknown. We may hypothesize that all these signals could be integrated, at least in part, by the kisspeptin system. In order to capture a glimpse of these regulatory mechanisms, kiss1 and kiss2 mRNA expression levels and those of their kiss receptors (kiss1r, kiss2r) were analyzed in different areas of the brain and in the pituitary of pubertal male sea bass during gametogenesis. Furthermore, other reproductive hormones and factors as well as the percentage of males showing full spermiation were also analyzed. Treated fish fed maintenance diets provided evidence of overexpression of the kisspeptin system in the main hypophysiotropic regions of the brain throughout the entire sexual cycle. Conversely, Gnrh1 and gonadotropin pituitary content and plasma sexual steroid levels were downregulated, except for Fsh levels, which were shown to increase during spermiation. Treated fish exhibited lower rates of spermiation as compared to control group and a delay in its accomplishment. These results demonstrate how the kisspeptin system and plasma Fsh levels are differentially affected by maintenance diets, causing a retardation, but not a full blockage of the reproductive process in the teleost fish European sea bass. This suggests that a hormonal adaptive strategy may be operating in order to preserve reproductive function in this species.


Subject(s)
Bass/physiology , Fish Proteins/physiology , Food , Kisspeptins/physiology , Reproduction/physiology , Sexual Maturation/physiology , Animals , Bass/genetics , Fish Proteins/genetics , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/metabolism , Gene Expression , Gonadotropin-Releasing Hormone/metabolism , Gonadotropins/blood , Gonadotropins/metabolism , Hypothalamus/metabolism , Kisspeptins/genetics , Luteinizing Hormone/metabolism , Male , Mesencephalon/metabolism , Pituitary Gland/metabolism , Prosencephalon/metabolism , Receptors, FSH/genetics , Receptors, FSH/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Receptors, LH/genetics , Receptors, LH/physiology , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seasons , Sexual Maturation/genetics , Spermatogenesis/genetics , Spermatogenesis/physiology
5.
Gen Comp Endocrinol ; 229: 100-11, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26979276

ABSTRACT

In this study, we report the cloning of three transcripts for leptin receptor in the European sea bass, a marine teleost of economic interest. The two shortest variants, generated by different splice sites, encode all functional extracellular and intracellular domains but missed the transmembrane domain. The resulting proteins are therefore potential soluble binding proteins for leptin. The longest transcript (3605bp), termed sblepr, includes all the essential domains for binding and transduction of the signal. Thus, it is proposed as the ortholog for the human LEPR gene, the main responsible for leptin signaling. Phylogenetic analysis shows the sblepr clustered within the teleost leptin receptor group in 100% of the bootstrap replicates. The neuroanatomical localization of sblepr expressing cells has been assessed by in situ hybridization in brains of sea bass of both sexes during their first sexual maturation. At histological level, the distribution pattern of sblepr expressing cells in the brain shows no clear differences regarding sex or reproductive season. Transcripts of the sblepr have a widespread distribution throughout the forebrain and midbrain until the caudal portion of the hypothalamus. A high hybridization signal is detected in the telencephalon, preoptic area, medial basal and caudal hypothalamus and in the pituitary gland. In a more caudal region, sblepr expressing cells are identified in the longitudinal torus. The expression pattern observed for sblepr suggests that in sea bass, leptin is very likely to be involved in the control of food intake, energy reserves and reproduction.


Subject(s)
Bass/metabolism , Receptors, Leptin/metabolism , Animals , Bass/genetics , Eating , Europe , Female , Male , Neuroanatomy , Phylogeny , Reproduction , Tissue Distribution
6.
Gen Comp Endocrinol ; 221: 42-53, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26172577

ABSTRACT

Puberty is the process by which an immature animal acquires the ability to reproduce for the first time; its onset occurs soon after sexual differentiation and is characterized by the beginning of gametogenesis in both sexes. Here we present new insights on when and how the onset of puberty occurs in male European sea bass, its dependence on reaching a critical size, and how it can be controlled by photoperiod, revealing the existence of a photolabile period with important applications in aquaculture. Regarding size, apparently only European sea bass above a certain size threshold attain the ability to carry out gametogenesis during their first year of life, while their smaller counterparts fail to do so. This could imply that fish need to achieve an optimal threshold of hormone production, particularly from the kisspeptin/Gnrh/Gth systems, in order to initiate and conclude puberty. However, a long-term restricted feeding regime during the second year of life did not prevent the onset of puberty, thus suggesting that the fish are able to maintain the reproductive function, even at the expense of other functions. Finally, the study of daily hormonal rhythms under different photoperiod regimes revealed the equivalence between their core values and those of seasonal rhythms, in such a way that the daily rhythms could be considered as the functional units of the seasonal rhythms.


Subject(s)
Bass/physiology , Sexual Maturation/physiology , Animals , Circadian Rhythm/radiation effects , Endocrine System/metabolism , Female , Male , Photoperiod , Sex Differentiation/radiation effects , Sexual Maturation/radiation effects
7.
Reproduction ; 150(3): 227-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26047834

ABSTRACT

Two forms of kiss gene (kiss1 and kiss2) have been described in the teleost sea bass. This study assesses the cloning and characterization of two Kiss receptor genes, namely kissr2 and kissr3 (known as gpr54-1b and gpr54-2b, respectively), and their signal transduction pathways in response to Kiss1 and Kiss2 peptides. Phylogenetic and synteny analyses indicate that these paralogs originated by duplication of an ancestral gene before teleost specific duplication. The kissr2 and kissr3 mRNAs encode proteins of 368 and 378 amino acids, respectively, and share 53.1% similarity in amino acid sequences. In silico analysis of the putative promoter regions of the sea bass Kiss receptor genes revealed conserved flanking regulatory sequences among teleosts. Both kissr2 and kissr3 are predominantly expressed in brain and gonads of sea bass, medaka and zebrafish. In the testis, the expression levels of sea bass kisspeptins and Kiss receptors point to a significant variation during the reproductive cycle. In vitro functional analyses revealed that sea bass Kiss receptor signals are transduced both via the protein kinase C and protein kinase A pathway. Synthetic sea bass Kiss1-15 and Kiss2-12 peptides activated Kiss receptors with different potencies, indicating a differential ligand selectivity. Our data suggest that Kissr2 and Kissr3 have a preference for Kiss1 and Kiss2 peptides, respectively, thus providing the basis for future studies aimed at establishing their physiologic roles in sea bass.


Subject(s)
Bass/metabolism , Fish Proteins/metabolism , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Bass/genetics , CHO Cells , Cricetulus , Cyclic AMP-Dependent Protein Kinases/metabolism , Evolution, Molecular , Female , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Kisspeptins/genetics , Ligands , Male , Molecular Sequence Data , Peptide Fragments/pharmacology , Phylogeny , Promoter Regions, Genetic , Protein Kinase C/metabolism , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Reproduction , Signal Transduction , Transfection
8.
Gen Comp Endocrinol ; 221: 31-41, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26002037

ABSTRACT

Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.


Subject(s)
Bass/metabolism , Biotechnology/methods , Gonadotropins/metabolism , Animals , Bass/genetics , Female , Gonads/metabolism , Male , Nuclear Transfer Techniques , Sex Determination Processes
9.
Article in English | MEDLINE | ID: mdl-25810361

ABSTRACT

Evidence exists that melatonin may drive the seasonal changes in kisspeptin-expressing cells and GnRH/gonadotropin secretion in mammals, thus modulating their reproductive activity. This study established the influence of long-term melatonin administration (as an implant) on growth performance and reproduction of adult male sea bass. Melatonin reduced the fish weight and condition factor, thus affecting the performance of fish. Melatonin also affected gonadogenesis, as shown by a decrease in the gonadosomatic index after 150 days of treatment and the lower percentage of running males during the spermatogenesis and full spermiation stages of this species. Exogenous melatonin also resulted in lower plasma androgen levels during the reproductive period, and showed a significant decrease in serum Lh and Fsh concentration after 30 and 60 days of treatment, respectively. Thus, melatonin elicited seasonal changes in key reproductive hormones that affected testicular maturity. The hypothalamic expression of kiss1 was significantly higher in melatonin-treated fish than in controls after 30 days of treatment, while a significant increase in kiss2 expression was detected on day 90 of treatment. By contrast, melatonin showed a significant decrease in kisspeptin expression in the dorsal brain on day 150 of treatment and also affected the expression of gnrh-1 and gnrh-3 and gnrhr-II-1a and 2b and the fshß gene in the pituitary. These results suggest that in this species, melatonin evokes changes in the mRNA levels of kisspeptin and gnrh system genes that appear to mirror disturbances in spermatogenesis.


Subject(s)
Bass/metabolism , Fish Proteins/genetics , Gonadotropin-Releasing Hormone/genetics , Kisspeptins/genetics , Melatonin/physiology , Pituitary Gland/metabolism , Spermatogenesis , Animals , Bass/genetics , Brain/metabolism , Breeding , Fish Proteins/metabolism , Gene Expression , Gene Expression Regulation , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Male , Organ Specificity , Seasons
10.
PLoS One ; 8(7): e70177, 2013.
Article in English | MEDLINE | ID: mdl-23894610

ABSTRACT

This study, conducted in the brain of a perciform fish, the European sea bass, aimed at raising antibodies against the precursor of the kisspeptins in order to map the kiss systems and to correlate the expression of kisspeptins, kiss1 and kiss2, with that of kisspeptin receptors (kiss-R1 and kiss-R2). Specific antibodies could be raised against the preprokiss2, but not the preoprokiss1. The data indicate that kiss2 neurons are mainly located in the hypothalamus and project widely to the subpallium and pallium, the preoptic region, the thalamus, the pretectal area, the optic tectum, the torus semicircularis, the mediobasal medial and caudal hypothalamus, and the neurohypophysis. These results were compared to the expression of kiss-R1 and kiss-R2 messengers, indicating a very good correlation between the wide distribution of Kiss2-positive fibers and that of kiss-R2 expressing cells. The expression of kiss-R1 messengers was more limited to the habenula, the ventral telencephalon and the proximal pars distalis of the pituitary. Attempts to characterize the phenotype of the numerous cells expressing kiss-R2 showed that neurons expressing tyrosine hydroxylase, neuropeptide Y and neuronal nitric oxide synthase are targets for kisspeptins, while GnRH1 neurons did not appear to express kiss-R1 or kiss-R2 messengers. In addition, a striking result was that all somatostatin-positive neurons expressed-kissR2. These data show that kisspeptins are likely to regulate a wide range of neuronal systems in the brain of teleosts.


Subject(s)
Bass/metabolism , Brain/metabolism , Fish Proteins/metabolism , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Bass/genetics , Brain Chemistry , Female , Fish Proteins/analysis , Fish Proteins/genetics , Kisspeptins/genetics , Male , Neurons/metabolism , RNA, Messenger/analysis , Receptors, G-Protein-Coupled/analysis , Receptors, G-Protein-Coupled/genetics
11.
J Comp Neurol ; 521(4): 933-48, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-22886357

ABSTRACT

Kisspeptins are now considered key players in the neuroendocrine control of puberty and reproduction, at least in mammals. Most teleosts have two kiss genes, kiss1 and kiss2, but their sites of expression are still poorly documented. As a first step in investigating the role of kisspeptins in the European sea bass, a perciform fish, we studied the distribution of kiss1 and kiss2-expressing cells in the brain of males and females undergoing their first sexual maturation. Animals were examined at early and late in the reproductive season. We also examined the putative expression of estrogen receptors in kiss-expressing cells and, finally, we investigated whether kisspeptins are expressed in the pituitary gland. We show that kiss1-expressing cells were consistently detected in the habenula and, in mature males and females, in the rostral mediobasal hypothalamus. In both sexes, kiss2-expressing cells were consistently detected at the level of the preoptic area, but the main kiss2 mRNA-positive population was observed in the dorsal hypothalamus, above and under the lateral recess. No obvious sexual differences in kiss1 and kiss2 mRNA expression were detected. Additional studies based on confocal imaging clearly showed that most kiss1 mRNA-containing cells of the mediobasal hypothalamus strongly express ERα and slightly express ERß2. At the pituitary level, both sexes exhibited kiss1 mRNA expression in most FSHß-positive cells and never in LHß-positive cells.


Subject(s)
Bass/metabolism , Brain/metabolism , Kisspeptins/biosynthesis , Pituitary Gland/metabolism , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kisspeptins/analysis , Male , RNA, Messenger/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Gene ; 492(1): 250-61, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22037609

ABSTRACT

Turbot is one of the most important farmed fish in Europe. This species exhibits a considerable sexual dimorphism in growth and sexual maturity that makes the all-female production recommended for turbot farming. Our knowledge about the genetic basis of sex determination and the molecular regulation of gonad differentiation in this species is still limited. Our goal was to identify and compare gene expression and functions between testes and ovaries in adults in order to ascertain the relationship between the genes that could be involved in the gonad differentiation or related to the sex determination system. The identification of differentially expressed sex related genes is an initial step towards understanding the molecular mechanisms of gonad differentiation. For this, we carried out a transcriptome analysis based on cDNA-AFLP technique which allowed us to obtain an initial frame on sex-specific gene expression that will facilitate further analysis especially along the critical gonad differentiating period. With the aim of widening the study on sex-biased gene expression we reproduced the same experiments in two somatic tissues: liver and brain. We have selected the liver because it is the most analyzed one regarding sexual dimorphic gene expression and due to its importance in steroid hormones metabolism and the brain because the functional relationship between brain and gonad is documented. We found slight but important differences between sexes which deserve further investigation.


Subject(s)
Brain/metabolism , Flatfishes/genetics , Gonads/metabolism , Liver/metabolism , Sex Characteristics , Amplified Fragment Length Polymorphism Analysis/methods , Animals , DNA, Complementary , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Male , Ovary/metabolism , Sex Differentiation/genetics , Testis/metabolism
13.
Gen Comp Endocrinol ; 175(2): 234-43, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22137912

ABSTRACT

Kisspeptins, the peptide products of the Kiss1 gene, were initially identified in mammals as ligands of the G protein-coupled receptor 54 (GPR54; also termed Kiss1R) with ability to suppress tumor metastasis. In late 2003, the indispensable role of kisspeptins in the control of reproductive function was disclosed by the seminal observations that humans and mice carrying inactivating mutations of GPR54 displayed hypogonadotropic hypogonadism. Since then, numerous experimental studies, conducted initially in several mammalian species, have substantiated the roles of kisspeptins as essential players in the physiologic regulation of key aspects of reproductive maturation and function, including the timing of puberty onset, the dynamic control of gonadotropin secretion via stimulation of GnRH neurons, the transmission of the negative and positive feedback effects of sex steroids, the metabolic regulation of fertility and the control of reproductive function by environmental (photoperiodic) cues. Notably, while studies about kisspeptins in non-mammals appeared initially to lag behind, significant efforts have been devoted recently to define the genomic organization and functional characteristics of kiss/kisspeptins and gpr54 in different non-mammalian species, including fish, reptiles and amphibians. These analyses, which will be comprehensively revised herein, have not only substantiated the conserved, essential roles of kisspeptins in the control of reproduction, but have also disclosed intriguing evolutionary aspects of kisspeptins and their receptors. Such comparative approaches will be instrumental to fuel further studies on the molecular regulation and physiological roles of kisspeptins, thus helping to unveil the complex biology of this system as indispensable regulator of the reproductive axis in a wide diversity of animal species.


Subject(s)
Amphibians/metabolism , Fishes/metabolism , Kisspeptins/physiology , Amphibians/genetics , Animals , Fishes/genetics , Gonadal Steroid Hormones/physiology , Kisspeptins/genetics , Kisspeptins/metabolism , Photoperiod , Phylogeny , Sexual Maturation , Signal Transduction
14.
Gen Comp Endocrinol ; 165(3): 483-515, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19442666

ABSTRACT

Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.


Subject(s)
Aquaculture/methods , Fishes/growth & development , Sexual Maturation/physiology , Animals , Body Size/physiology , Breeding , Female , Fish Diseases/immunology , Fish Diseases/metabolism , Fishes/genetics , Fishes/metabolism , Gonads/growth & development , Gonads/metabolism , Gonads/physiology , Male , Photoperiod
15.
Genetics ; 183(4): 1443-52, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19786621

ABSTRACT

Sex determination in fish is a labile character in evolutionary terms. The sex-determining (SD) master gene can differ even between closely related fish species. This group is an interesting model for studying the evolution of the SD region and the gonadal differentiation pathway. The turbot (Scophthalmus maximus) is a flatfish of great commercial value, where a strong sexual dimorphism exists for growth rate. Following a QTL and marker association approach in five families and a natural population, we identified the main SD region of turbot at the proximal end of linkage group (LG) 5, close to the SmaUSC-E30 marker. The refined map of this region suggested that this marker would be 2.6 cM and 1.4 Mb from the putative SD gene. This region appeared mostly undifferentiated between males and females, and no relevant recombination frequency differences were detected between sexes. Comparative genomics of LG5 marker sequences against five model species showed no similarity of this chromosome to the sex chromosomes of medaka, stickleback, and fugu, but suggested a similarity to a sex-associated QTL from Oreochromis spp. The segregation analysis of the closest markers to the SD region demonstrated a ZW/ZZ model of sex determination in turbot. A small proportion of families did not fit perfectly with this model, which suggests that other minor genetic and/or environmental factors are involved in sex determination in this species.


Subject(s)
Flatfishes/genetics , Sex Determination Processes , Animals , Chromosome Mapping , Evolution, Molecular , Female , Genetic Linkage , Genetic Markers/genetics , Genomics , Male , Microsatellite Repeats/genetics , Quantitative Trait Loci/genetics , Sex Characteristics
16.
Mol Cell Endocrinol ; 312(1-2): 61-71, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19084576

ABSTRACT

Kisspeptins, the products of KiSS-1 gene, have recently emerged as fundamental regulators of reproductive function in different mammalian and, presumably, non-mammalian species. To date, a single form of KiSS-1 has been described in mammals, and recently, in several fish species and Xenopus. We report herein the cloning and characterization of two distinct KiSS-like genes, namely, KiSS-1 and KiSS-2, in the teleost sea bass. While KiSS-1 encodes a peptide identical to rodent kisspeptin-10, the predicted KiSS-2 decapeptide diverges at 4 amino acids (FNFNPFGLRF). Genome database searches showed that both genes are present in non-placental vertebrate genomes. Indeed, phylogenetic and genome mapping analyses suggest that KiSS-1 and KiSS-2 are paralogous genes that originated by duplication of an ancestral gene, although KiSS-2 is lost in placental mammals. KiSS-1 and KiSS-2 mRNAs are present in brain and gonads of sea bass, medaka and zebrafish. Comparative functional studies demonstrated that KiSS-2 decapeptide was significantly more potent than KiSS-1 peptide in inducing LH and FSH secretion in sea bass. In contrast, KiSS-2 decapeptide only weakly elicited LH secretion in rats, whereas KiSS-1 peptide was maximally effective. Our data are the first to provide conclusive evidence for the existence of a second KiSS gene, KiSS-2, in non-placental vertebrates, whose product is likely to play a dominant stimulatory role in the regulation of the gonadotropic axis at least in teleosts.


Subject(s)
Fish Proteins/genetics , Proteins/genetics , Reproduction/genetics , Vertebrates/genetics , Zebrafish Proteins/genetics , Aging , Amino Acid Sequence , Analysis of Variance , Animals , Base Sequence , Bass/genetics , Bass/metabolism , Cloning, Molecular , Female , Fish Proteins/chemistry , Fish Proteins/metabolism , Gonadotropins, Pituitary/blood , Kisspeptins , Male , Molecular Sequence Data , Organ Specificity , Oryzias/genetics , Oryzias/metabolism , Phylogeny , Proteins/chemistry , Proteins/metabolism , Rats , Rats, Wistar , Seasons , Sequence Alignment , Sequence Analysis, DNA , Synteny , Time Factors , Vertebrates/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
17.
Genome ; 47(6): 1105-13, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15644968

ABSTRACT

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.


Subject(s)
Polymorphism, Genetic , Y Chromosome , Animals , Chromosome Mapping , Genetic Linkage , Genetic Markers , Genotype , In Situ Hybridization, Fluorescence , Karyotyping , Male , Oncorhynchus mykiss , Phylogeny , Physical Chromosome Mapping , Sex Determination Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...