Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nano Lett ; 24(11): 3462-3469, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38451166

ABSTRACT

Two-dimensional (2D) room-temperature multiferroic materials are highly desirable but still very limited. Herein, we propose a potential strategy to obtain such materials in 2D metal-organic frameworks (MOFs) by utilizing the d-p direct spin coupling in conjunction with center-symmetry-breaking six-membered heterocyclic rings. Based on this strategy, a screening of 128 2D MOFs results in the identification of three multiferroics, that is, Cr(1,2-oxazine)2, Cr(1,2,4-triazine)2, and Cr(1,2,3,4-trazine)2, simultaneously exhibiting room-temperature ferrimagnetism and ferroelectricity/antiferroelectricity. The room-temperature ferrimagnetic order (306-495 K) in these MOFs originates from the strong d-p direct magnetic exchange interaction between Cr cations and ligand anions. Specifically, Cr(1,2-oxazine)2 exhibits ferroelectric behavior with an out-of-plane polarization of 4.24 pC/m, whereas the other two manifest antiferroelectric characteristics. Notably, all three materials present suitable polarization switching barriers (0.18-0.31 eV). Furthermore, these MOFs are all bipolar magnetic semiconductors with moderate band gaps, in which the spin direction of carriers can be manipulated by electrical gating.

2.
Angew Chem Int Ed Engl ; 63(19): e202316717, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38477147

ABSTRACT

The electrolytes for lithium metal batteries (LMBs) are plagued by a low Li+ transference number (T+) of conventional lithium salts and inability to form a stable solid electrolyte interphase (SEI). Here, we synthesized a self-folded lithium salt, lithium 2-[2-(2-methoxy ethoxy)ethoxy]ethanesulfonyl(trifluoromethanesulfonyl) imide (LiETFSI), and comparatively studied with its structure analogue, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl]methanesulfonamide (LiFEA). The special anion chemistry imparts the following new characteristics: i) In both LiFEA and LiETFSI, the ethylene oxide moiety efficiently captures Li+, resulting in a self-folded structure and high T+ around 0.8. ii) For LiFEA, a Li-N bond (2.069 Å) is revealed by single crystal X-ray diffraction, indicating that the FEA anion possesses a high donor number (DN) and thus an intensive interphase "self-cleaning" function for an ultra-thin and compact SEI. iii) Starting from LiFEA, an electron-withdrawing sulfone group is introduced near the N atom. The distance of Li-N is tuned from 2.069 Šin LiFEA to 4.367 Šin LiETFSI. This alteration enhances ionic separation, achieves a more balanced DN, and tunes the self-cleaning intensity for a reinforced SEI. Consequently, the fast charging/discharging capability of LMBs is progressively improved. This rationally tuned anion chemistry reshapes the interactions among Li+, anions, and solvents, presenting new prospects for advanced LMBs.

3.
ACS Omega ; 9(6): 7163-7172, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371816

ABSTRACT

In the InGaN multiple quantum wells (MQWs), V-shaped pits play a crucial role in carrier transport, which directly affects emitting efficiency. First-principles calculations are applied to investigate the formation of the V-shaped pits, and the results indicate that they are inclined to form in the N-rich environment. Meanwhile, we calculate the interfacial electronic properties of the sidewalls of the V-shaped pits with varying indium (In) and magnesium (Mg) compositions. The calculated valence band offset (VBO) of the In0.3Ga0.7N/Ga0.94Mg0.06N (0001) is 0.498 eV, while that of the In0.07Ga0.93N/Ga0.94Mg0.06N (101̅1) is 0.340 eV. The band alignment results show that the valence band edges in the Ga1-yMgyN layer are in higher energy than in the InxGa1-xN layer. These are in good agreement with the values reported in the previous numerical simulation. Moreover, the calculation of the projected density of states (PDOS) of interfaces discloses that the strong hybridization between the N 2p orbital and the Mg 2p orbital exerts a vital influence on the upward shifts of the valence band edges in the superlattices (SLs). All these results reveal that holes are easier to inject into the quantum wells (QWs) via the sidewall of V-shaped pits rather than the c-plane QWs, providing a theoretical basis for the growth of InGaN MQWs samples containing V-shaped pits.

4.
Nat Nanotechnol ; 19(3): 387-398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052943

ABSTRACT

Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1ß secretion. The elevated interleukin-1ß increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.


Subject(s)
Neoplasms , Trained Immunity , Animals , Mice , Interleukin-1beta , Vaccination , Neoplasms/prevention & control , Lymphocyte Activation , Antigens, Neoplasm , Bacteria
5.
Phys Chem Chem Phys ; 25(40): 27774-27782, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37814799

ABSTRACT

Improving the luminescence efficiency of InGaN-based long wavelength LEDs for use in micro-LED full-colour displays remains a huge challenge. The strain-induced piezoelectric effect is an effective measure for modulating the carrier redistribution at the InGaN/GaN heterointerfaces. Our theoretical results reveal that the hole injection is significantly improved by the diminution of the valence band offset (VBO) of the InGaN/GaN heterointerfaces along the [0001] direction, and inversely, the VBO increases along the [0001] direction. The energy band structures showed that the tensile strain of the GaN film grown on a silicon (Si) substrate could weaken the internal electric field of the InGaN well layer leading to a flattening of the energy band, which increases the overlap of electron and hole wave functions. In addition, the strain-induced piezoelectric polarisation of the InGaN layer on the Si substrate generates opposite sheet-bound charges at the heterointerfaces, which causes a reduction in the depletion region of the InGaN/GaN quantum wells (QWs). A systematic analysis illustrates that the control of the piezoelectric polarisation of the InGaN QW layer is available improve the internal quantum efficiency of the InGaN-based LEDs.

6.
Adv Mater ; 35(46): e2306158, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643537

ABSTRACT

Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.


Subject(s)
Cancer Vaccines , Extracellular Vesicles , Granulocyte-Macrophage Colony-Stimulating Factor , Trained Immunity , Tumor-Associated Macrophages
7.
Talanta ; 265: 124887, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37429255

ABSTRACT

Detection abilities on tested subjects of sensors should be closely connected to the sensing unit numbers. Herein, two anion sensors ICZ-o-1S and ICZ-o-2S were synthesized by using indolo (2,3-a) carbazoles as fluorescent chromophore and salicylaldehyde as recognition site. Though UV-Vis and fluorescent ways, it demonstrated that F- can induce the sensor solutions becoming colored from colorless to yellow green, and can endow them with bright green turn-on fluorescence, proving their sensitive and selective sensing on F-. Accordingly, the F ion sensing studies including anti-interference abilities against to other anions on fluorescence response, stoichiometric ratios of sensor-F- in 1 : 1 and 1 : 2, -OH deprotonation sensing mechanism confirmed by 1H NMR titration and theoretical calculation were fully covered. Most importantly, fluoride ion detection limits achieved by ICZ-o-1S and ICZ-o-2S were 1.8 × 10-7 M and 6.0 × 10-8 M, respectively, the latter with two sensing units exhibited 3 times lower detection limit outcompeted to the former with only one sensing unit, rendering the sensor design strategy of improving detecting ability by increasing sensing unit number was rational. The practical application of F- detection in water-containing environment calibrated from the standard curve between the fluorescence intensity of sensor-F- system and the changing F- concentration was conducted. In addition, the accuracy of the sensor on detecting F- was evaluated by the spiked recovery experiment, therefore, the fast and convenient F- concentration detection based on the fluorescence color RGB values of the tested sensor-sample mixture was investigated. Consequently, the results obtained by these two sensors should deliver effective supports on designing high-performance sensors featuring naked-eye and fluorescence turn-on anion sensing by altering the response unit numbers.

9.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188928, 2023 07.
Article in English | MEDLINE | ID: mdl-37257629

ABSTRACT

Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. Surgery, chemotherapy, radiotherapy, and radioactive iodine (RAI) therapy are the standard TC treatment modalities. However, recurrence or tumor metastasis remains the main challenge in the management of anaplastic thyroid cancer (ATC) and radioiodine (RAI) radioactive iodine-refractory differentiated thyroid cancer (RR-DTC). Several multi-tyrosine kinase inhibitors (MKIs), or immune checkpoint inhibitors in combination with MKIs, have emerged as novel therapies for controlling the progression of DTC, medullary thyroid cancer (MTC), and ATC. Here, we discuss and summarize the molecular basis of TC, review molecularly targeted therapeutic drugs in clinical research, and explore potentially novel molecular therapeutic targets. We focused on the evaluation of current and recently emerging tyrosine kinase inhibitors approved for systemic therapy for TC, including lenvatinib, sorafenib and cabozantinib in DTC, vandetanib, cabozantinib, and RET-specific inhibitor (selpercatinib and pralsetinib) in MTC, combination dabrafenib with trametinib in ATC. In addition, we also discuss promising treatments that are in clinical trials and may be incorporated into clinical practice in the future, briefly describe the resistance mechanisms of targeted therapies, emphasizing that personalized medicine is critical to the design of second-line therapies.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Iodine Radioisotopes/therapeutic use , Anilides/therapeutic use , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Protein Kinase Inhibitors/therapeutic use
10.
J Phys Chem Lett ; 14(21): 5048-5054, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37227122

ABSTRACT

Cluster-assembled materials are of considerable interest owing to their unique properties and extensive application prospects. Nevertheless, the majority of cluster-assembled materials developed to date are nonmagnetic, limiting their applications in spintronics. Thus, two-dimensional (2D) cluster-assembled sheets with intrinsic ferromagnetism are very desirable. Here, via first-principles calculations, utilizing the recently synthesized magnetic superatomic cluster [Fe6S8(CN)6]5- as a building block, we design a series of thermodynamically stable 2D nanosheets [NH4]3[Fe6S8(CN)6]TM (TM = Cr, Mn, Fe, Co) with robust ferromagnetic ordering (Curie temperatures (Tc) up to 130 K), medium band gaps (from 1.96 to 2.01 eV), and sizable magnetic anisotropy energy (up to 0.58 meV per unit cell). Among these nanosheets, the [NH4]3[Fe6S8(CN)6]Cr is a bipolar magnetic semiconductor, whereas the other three ([NH4]3[Fe6S8(CN)6]TM (TM = Mn, Fe, Co) are half semiconductors. Additionally, the electronic and magnetic properties of [NH4]3[Fe6S8(CN)6]TM (TM = Cr, Mn, Fe, Co) nanosheets can be easily modulated by electron and hole doping via simply controlling the number of ammonium counterions. Furthermore, the Curie temperatures of the 2D nanosheets can be improved to 225 and 327 K by choosing 4d/5d transition metals TM = Ru and Os, respectively.

11.
Small ; 19(23): e2300125, 2023 06.
Article in English | MEDLINE | ID: mdl-36879481

ABSTRACT

The widespread preexisting immunity against virus-like particles (VLPs) seriously limits the applications of VLPs as vaccine vectors. Enabling technology for exogenous antigen display should not only ensure the assembly ability of VLPs and site-specific modification, but also consider the effect of preexisting immunity on the behavior of VLPs in vivo. Here, combining genetic code expansion technique and synthetic biology strategy, a site-specific modification method for hepatitis B core (HBc) VLPs via incorporating azido-phenylalanine into the desired positions is described. Through modification position screening, it is found that HBc VLPs incorporated with azido-phenylalanine at the main immune region can effectively assemble and rapidly conjugate with the dibenzocycolctyne-modified tumor-associated antigens, mucin-1 (MUC1). The site-specific modification of HBc VLPs not only improves the immunogenicity of MUC1 antigens but also shields the immunogenicity of HBc VLPs themselves, thereby activating a strong and persistent anti-MUC1 immune response even in the presence of preexisting anti-HBc immunity, which results in the efficient tumor elimination in a lung metastatic mouse model. Together, these results demonstrate the site-specific modification strategy enabled HBc VLPs behave as a potent antitumor vaccine and this strategy to manipulate immunogenicity of VLPs may be suitable for other VLP-based vaccine vectors.


Subject(s)
Hepatitis B virus , Vaccines, Virus-Like Particle , Animals , Mice , Hepatitis B virus/genetics , Vaccines, Virus-Like Particle/genetics , Antigens, Neoplasm , Mice, Inbred BALB C
12.
Nat Commun ; 14(1): 1606, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959204

ABSTRACT

Micro-nano biorobots based on bacteria have demonstrated great potential for tumor diagnosis and treatment. The bacterial gene expression and drug release should be spatiotemporally controlled to avoid drug release in healthy tissues and undesired toxicity. Herein, we describe an alternating magnetic field-manipulated tumor-homing bacteria developed by genetically modifying engineered Escherichia coli with Fe3O4@lipid nanocomposites. After accumulating in orthotopic colon tumors in female mice, the paramagnetic Fe3O4 nanoparticles enable the engineered bacteria to receive and convert magnetic signals into heat, thereby initiating expression of lysis proteins under the control of a heat-sensitive promoter. The engineered bacteria then lyse, releasing its anti-CD47 nanobody cargo, that is pre-expressed and within the bacteria. The robust immunogenicity of bacterial lysate cooperates with anti-CD47 nanobody to activate both innate and adaptive immune responses, generating robust antitumor effects against not only orthotopic colon tumors but also distal tumors in female mice. The magnetically engineered bacteria also enable the constant magnetic field-controlled motion for enhanced tumor targeting and increased therapeutic efficacy. Thus, the gene expression and drug release behavior of tumor-homing bacteria can be spatiotemporally manipulated in vivo by a magnetic field, achieving tumor-specific CD47 blockage and precision tumor immunotherapy.


Subject(s)
Colonic Neoplasms , Nanoparticles , Neoplasms , Female , Animals , Mice , Immunotherapy , Neoplasms/pathology , Phagocytosis , Colonic Neoplasms/therapy , Bacteria
13.
Small ; 19(23): e2206160, 2023 06.
Article in English | MEDLINE | ID: mdl-36890776

ABSTRACT

Through inducing death receptor (DR) clustering to activate downstream signaling, tumor necrosis factor related apoptosis inducing ligand (TRAIL) trimers trigger apoptosis of tumor cells. However, the poor agonistic activity of current TRAIL-based therapeutics limits their antitumor efficiency. The nanoscale spatial organization of TRAIL trimers at different interligand distances is still challenging, which is essential for the understanding of interaction pattern between TRAIL and DR. In this study, a flat rectangular DNA origami is employed as display scaffold, and an "engraving-printing" strategy is developed to rapidly decorate three TRAIL monomers onto its surface to form DNA-TRAIL3 trimer (DNA origami with surface decoration of three TRAIL monomers). With the spatial addressability of DNA origami, the interligand distances are precisely controlled from 15 to 60 nm. Through comparing the receptor affinity, agonistic activity and cytotoxicity of these DNA-TRAIL3 trimers, it is found that ≈40 nm is the critical interligand distance of DNA-TRAIL3 trimers to induce death receptor clustering and the resulting apoptosis.Finally, a hypothetical "active unit" model is proposed for the DR5 clustering induced by DNA-TRAIL3 trimers.


Subject(s)
Neoplasms , Receptors, TNF-Related Apoptosis-Inducing Ligand , Ligands , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Apoptosis , Tumor Necrosis Factor-alpha , Cell Line, Tumor
14.
Curr Psychol ; 42(12): 10426-10436, 2023.
Article in English | MEDLINE | ID: mdl-34608366

ABSTRACT

Investigating the contributing factors of career adaptability has always been an important topic in the field of vocational psychology research. From the perspective of person-environment interaction, this study introduced the role accumulation theory into the researches of career adaptability. Using a sample of 379 Chinese college students (mean age = 20.36 years, SD = 1.67), a model of role accumulation affecting college students' career adaptability was constructed, and the parallel mediating mechanisms of self-efficacy and social support were also discussed. Participants filled out questionnaires regarding role accumulation, self-efficacy, social support, and career adaptability. The results of structural equation modeling (SEM) showed that: (1) Role accumulation positively predicted career adaptability in college students; (2) Role accumulation also indirectly predicted career adaptability through self-efficacy and social support. The present study is the first to validate the psychological pathways linking role accumulation to career adaptability via self-efficacy and social support. The contribution of this study to the literature is to provide a new perspective that can clarify the predictors of career adaptability. In addition, for educational administrators and career practitioners, targeting role accumulation is valuable for developing college students' career adaptability.

15.
Adv Sci (Weinh) ; 10(3): e2204334, 2023 01.
Article in English | MEDLINE | ID: mdl-36453580

ABSTRACT

Restoring sodium iodide symporter (NIS) expression and function remains a major challenge for radioiodine therapy in anaplastic thyroid cancer (ATC). For more efficient delivery of messenger RNA (mRNA) to manipulate protein expression, a lipid-peptide-mRNA (LPm) nanoparticle (NP) is developed. The LPm NP is prepared by using amphiphilic peptides to assemble a peptide core and which is then coated with cationic lipids. An amphiphilic chimeric peptide, consisting of nine arginine and hydrophobic segments (6 histidine, C18 or cholesterol), is synthesized for adsorption of mRNA encoding NIS in RNase-free conditions. In vitro studies show that LP(R9H6) m NP is most efficient at delivering mRNA and can increase NIS expression in ATC cells by more than 10-fold. After intratumoral injection of NIS mRNA formulated in optimized LPm NP, NIS expression in subcutaneous ATC tumor tissue increases significantly in nude mice, resulting in more iodine 131 (131 I) accumulation in the tumor, thereby significantly inhibiting tumor growth. Overall, this work designs three arginine-rich peptide nanoparticles, contributing to the choice of liposome cores for gene delivery. LPm NP can serve as a promising adjunctive therapy for patients with ATC by restoring iodine affinity and enhancing the therapeutic efficacy of radioactive iodine.


Subject(s)
Iodine , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Mice , Cell Line, Tumor , Iodine Radioisotopes/therapeutic use , Lipids , Liposomes , Mice, Nude , Peptides , RNA, Messenger , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/genetics , Humans
16.
ACS Nano ; 17(1): 437-452, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36534945

ABSTRACT

In tumor nanovaccines, nanocarriers enhance the delivery of tumor antigens to antigen-presenting cells (APCs), thereby ensuring the robust activation of tumor antigen-specific effector T-cells to kill tumor cells. Through employment of their high immunogenicity and nanosize, we have developed a "Plug-and-Display" delivery platform on the basis of bacterial outer membrane vesicles (OMVs) for tumor nanovaccines (NanoVac), which can rapidly display different tumor antigens and efficiently eliminate lung metastases of melanoma. In this study, we first upgraded the NanoVac to increase their antigen display efficiency. However, we found that the presence of a subcutaneous xenograft seriously hampered the efficiency of NanoVac to eliminate lung metastases, with the subcutaneous xenograft mimicking the primary tumor burden in clinical practice. The primary tumor secreted significant amounts of granulocyte colony-stimulating factor (G-CSF) and altered the epigenetic features of granulocyte monocyte precursor cells (GMPs) in the bone marrow, thus disrupting systemic immunity, particularly the function of APCs, and ultimately resulting in NanoVac failure to affect metastases. These changes in the systemic immune macroenvironment were plastic, and debulking surgery of primary tumor resection reversed the dysfunction of APCs and failure of NanoVac. These results demonstrate that, in addition to the formulation design of the tumor nanovaccines themselves, the systemic immune macroenvironment incapacitated by tumor development is another key factor that cannot be ignored to affect the efficiency of tumor nanovaccines, and the combination of primary tumor resection with NanoVac is a promising radical treatment for widely metastatic tumors.


Subject(s)
Cytoreduction Surgical Procedures , Lung Neoplasms , Humans , Antigen-Presenting Cells , T-Lymphocytes , Antigens, Neoplasm
17.
Mol Ther Nucleic Acids ; 30: 208-225, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36250208

ABSTRACT

Genetic predisposition and disruption of host gut microbiota and immune system can result in inflammatory bowel disease (IBD). Here, we show that miRNA-149-5p (miR-149-5p) and miRNA-149-3p (miR-149-3p) play crucial roles in IBD. Mice lacking miR-149-3p were considerably more susceptible to dextran sulfate sodium (DSS)-induced colitis than wild-type (WT) mice, accompanied by more serious inflammatory symptoms and increased gene expression of certain inflammatory cytokines. Both miR-149-5p and miR-149-3p suppressed colon inflammatory response in vitro and in vivo. Furthermore, we found significant differences in the composition of the gut microbiota between WT and miR-149-3p-/- mice by 16S rRNA sequencing. Co-housing endowed susceptibility to WT mice against DSS-induced colitis compared with the WT control group. However, susceptibility of miR-149-3p-/- mice against DSS-induced colitis was still present after antibiotic treatment. These findings suggest that the deletion of miR-149-3p altered gut microbiota and influenced pathogenesis of intestinal inflammation, but sensitivity of miR-149-3p-/- mice to DSS-induced colitis is not conferred by microbiota. In addition, we identified the roles of miR-149-5p and miR-149-3p in colon inflammation, which may serve as an attractive therapeutic tool for colitis or IBD, and even colitis-associated carcinoma.

18.
Nanoscale ; 14(42): 15799-15803, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36254465

ABSTRACT

Understanding the spinterface between magnetic electrodes and molecules, and realizing the controllable spin filtering effect, are crucial for the development of high-performance molecular devices, but both still face big challenges. Here, based on first-principles calculations of an Fe-Mn(DBTAA)-Fe single molecule spintronic device, we unveil that spin filtering efficiency is highly dependent on interface configurations, which can modulate and even reverse the spin polarization of tunnelling electrons. For Fe-Mn(DBTAA)-Fe, a varied spin filtering from -93% to +75% is observed. The underlying mechanism could be attributed to the distinct magnetic and electronic couplings between the Fe electrode and the Mn(DBTAA) molecule in different interface configurations. This work not only highlights the importance of a magnetic electrode-molecule interface, but also implies that through suitable interface design, the performance, e.g., of the spin filtering channel of single molecule spintronic devices, can be flexibly tuned.

19.
Cancer Biol Med ; 19(9)2022 09 23.
Article in English | MEDLINE | ID: mdl-36172794

ABSTRACT

Tumor vaccines, a type of personalized tumor immunotherapy, have developed rapidly in recent decades. These vaccines evoke tumor antigen-specific T cells to achieve immune recognition and killing of tumor cells. Because the immunogenicity of tumor antigens alone is insufficient, immune adjuvants and nanocarriers are often required to enhance anti-tumor immune responses. At present, vaccine carrier development often integrates nanocarriers and immune adjuvants. Among them, outer membrane vesicles (OMVs) are receiving increasing attention as a delivery platform for tumor vaccines. OMVs are natural nanovesicles derived from Gram-negative bacteria, which have adjuvant function because they contain pathogen associated molecular patterns. Importantly, OMVs can be functionally modified by genetic engineering of bacteria, thus laying a foundation for applications as a delivery platform for tumor nanovaccines. This review summarizes 5 aspects of recent progress in, and future development of, OMV-based tumor nanovaccines: strain selection, heterogeneity, tumor antigen loading, immunogenicity and safety, and mass production of OMVs.


Subject(s)
Cancer Vaccines , Neoplasms , Adjuvants, Immunologic , Antigens, Neoplasm , Bacterial Outer Membrane , Humans , Neoplasms/prevention & control , Pathogen-Associated Molecular Pattern Molecules
20.
World J Surg Oncol ; 20(1): 260, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35978360

ABSTRACT

BACKGROUND: Cluster of differentiation 147 (CD147) overexpression plays a key role in the proliferation, differentiation, invasion, metastasis, and prognosis of hepatocellular carcinoma (HCC). The aim of this study was to explore the relationship between rs6757 and the HCC risk in the South Chinese population, and the functional significance of rs6757 by affecting the efficacy of microRNA-3976 (miR-3976) binding to the CD147 3'-UTR. METHODS: We performed a retrospective case-control study to analyze the association between rs6757 and the risk of HCC. We chose candidate microRNAs with the potential of interacting with rs6757 through a series of silico analyses. A luciferase reporter gene assay was implemented to detect the binding extent of microRNAs to each polymorphic allele of rs6757. RESULTS: An obvious association between rs6757 and the risk of HCC was detected in C vs. T (OR = 1.826, 95% CI [1.263-2.642]), CC vs. TT (OR = 4.513, 95% CI [1.510-13.489]), dominant genetic model (OR = 1.824, 95% CI [1.120-2.965]), and recessive genetic model (OR = 3.765, 95% CI [1.286-11.020]). Bioinformatics analysis indicated that miR-3976 binding sites containing the rs6757-T allele had lower free energies than those with the C allele, the lower free energies, the higher affinities. Luciferase activity was remarkably decreased by miR-3976 binding to the CD147 3'-UTR bearing rs6757 T allele, which could be reversed by miR-3976 inhibitors. Furthermore, miR-3976 reduced the luciferase expression in a manner of dose-dependent when cotransfected with constructs with the CD147-TT-pSICHECK2. CONCLUSIONS: The research we have done suggests that rs6757 confers the CD147 allele-specific translational suppression by miR-3976, which provides a theoretical basis for antineoplastic therapy targeting CD147.


Subject(s)
Basigin/metabolism , Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Binding Sites , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Cell Line, Tumor , China , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...