Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 17(12)2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27973456

ABSTRACT

Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of ß-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other's conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.


Subject(s)
Galectins/chemistry , Galectins/metabolism , Animals , Binding Sites , Carbohydrates/chemistry , Chickens , Cryoprotective Agents/pharmacology , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Erythrocyte Aggregation/drug effects , Static Electricity , Structure-Activity Relationship
2.
Acta Biochim Biophys Sin (Shanghai) ; 48(10): 939-947, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27563008

ABSTRACT

Galectin-2 (Gal-2) plays a role in cancer, myocardial infarction, immune response, and gastrointestinal tract diseases. The only reported crystal structure of Gal-2 shows that it is a dimer in which the monomer subunits have almost identical structures, each binding with one molecule of lactose. In this study, we crystallized Gal-2 under new conditions that produced three crystal structures. In each Gal-2 dimer structure, lactose was shown to be bound to only one of the carbohydrate recognition domain subunits. In solution studies, the thermal shift assay demonstrated that inequivalent monomer subunits in the Gal-2 dimer become equivalent upon ligand binding. In addition, galectin-mediated erythrocyte agglutination assays using lactose and larger complex polysaccharides as inhibitors showed the structural differences between Gal-1 and Gal-2. Overall, our results reveal some novel aspects to the structural differentiation in Gal-2 and expand the potential for different types of molecular interactions that may be specific to this lectin.


Subject(s)
Galectin 2/chemistry , Lactose/chemistry , Peptides/chemistry , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Binding Sites/genetics , Crystallography, X-Ray , Galectin 2/genetics , Galectin 2/metabolism , Hemagglutination/drug effects , Hemagglutination Tests , Humans , Lactose/metabolism , Models, Molecular , Peptides/metabolism , Polysaccharides/pharmacology , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL