Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
BMC Genomics ; 25(1): 602, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886667

ABSTRACT

BACKGROUND: Spermatogenesis is a highly regulated and complex process in which DNA methylation plays a crucial role. This study aimed to explore the differential methylation profiles in sperm DNA between patients with asthenospermia (AS) and healthy controls (HCs), those with oligoasthenospermia (OAS) and HCs, and patients with AS and those with OAS. RESULTS: Semen samples and clinical data were collected from five patients with AS, five patients with OAS, and six age-matched HCs. Reduced representation bisulfite sequencing (RRBS) was performed to identify differentially methylated regions (DMRs) in sperm cells among the different types of patients and HCs. A total of 6520, 28,019, and 16,432 DMRs were detected between AS and HC, OAS and HC, and AS and OAS groups, respectively. These DMRs were predominantly located within gene bodies and mapped to 2868, 9296, and 9090 genes in the respective groups. Of note, 12, 9, and 8 DMRs in each group were closely associated with spermatogenesis and male infertility. Furthermore, BDNF, SMARCB1, PIK3CA, and DDX27; RBMX and SPATA17; ASZ1, CDH1, and CHDH were identified as strong differentially methylated candidate genes in each group, respectively. Meanwhile, the GO analysis of DMR-associated genes in the AS vs. HC groups revealed that protein binding, cytoplasm, and transcription (DNA-templated) were the most enriched terms in the biological process (BP), cellular component (CC), and molecular function (MF), respectively. Likewise, in both the OAS vs. HC and AS vs. OAS groups, GO analysis revealed protein binding, nucleus, and transcription (DNA-templated) as the most enriched terms in BP, CC, and MF, respectively. Finally, the KEGG analysis of DMR-annotated genes and these genes at promoters suggested that metabolic pathways were the most significantly associated across all three groups. CONCLUSIONS: The current study results revealed distinctive sperm DNA methylation patterns in the AS vs. HC and OAS vs. HC groups, particularly between patients with AS and those with OAS. The identification of key genes associated with spermatogenesis and male infertility in addition to the differentially enriched metabolic pathways may contribute to uncovering the potential pathogenesis in different types of abnormal sperm parameters.


Subject(s)
Asthenozoospermia , DNA Methylation , Oligospermia , Humans , Male , Asthenozoospermia/genetics , Adult , Oligospermia/genetics , Spermatozoa/metabolism , Spermatogenesis/genetics , Case-Control Studies , Epigenesis, Genetic
2.
PeerJ ; 12: e17540, 2024.
Article in English | MEDLINE | ID: mdl-38887620

ABSTRACT

Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Transcription Factors , Pyrus/metabolism , Pyrus/genetics , Anthocyanins/metabolism , Anthocyanins/genetics , Anthocyanins/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Two-Hybrid System Techniques , Fruit/metabolism , Fruit/genetics
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124690, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38909556

ABSTRACT

Peanut oil, prized for its unique taste and nutritional value, grapples with the pressing issue of adulteration by cost-cutting vendors seeking higher profits. In response, we introduce a novel approach using near-infrared spectroscopy to non-invasively and cost-effectively identify adulteration in peanut oil. Our study, analyzing spectral data of both authentic and intentionally adulterated peanut oil, successfully distinguished high-quality pure peanut oil (PPEO) from adulterated oil (AO) through rigorous analysis. By combining near-infrared spectroscopy with factor analysis (FA) and partial least squares regression (PLS), we achieved discriminant accuracies exceeding 92 % (S > 2) and 89 % (S > 1) for FA models 1 and 2, respectively. The PLS model demonstrated strong predictive capabilities, with a prediction coefficient (R2) surpassing 93.11 and a root mean square error (RMSECV) below 4.43. These results highlight the effectiveness of NIR spectroscopy in confirming the authenticity of peanut oil and detecting adulteration in its composition.

4.
Clin Chim Acta ; 559: 119681, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643816

ABSTRACT

OBJECTIVES: Demyelination and immunocyte-infiltrated lesions have been found in neuro-Behçet's disease (NBD) pathology. Lacking satisfying laboratory biomarkers in NBD impedes standard clinical diagnostics. We aim to explore the ancillary indicators for NBD diagnosis unveiling its potential etiology. METHODS: 28 NBD with defined diagnosis, 29 patients with neuropsychiatric lupus erythematosus, 30 central nervous system idiopathic inflammatory demyelination diseases (CNS-IIDD), 30 CNS infections, 30 cerebrovascular diseases, and 30 noninflammatory neurological diseases (NIND) were retrospectively enrolled. Immunoglobulins (Ig) in serum and cerebral spinal fluid (CSF) were detected by immunonephelometry and myelin basic protein (MBP) by quantitative enzyme-linked immunosorbent assay. RESULTS: IgA index is almost twice enhanced in NBD than NIND with an accuracy of 0.8488 in differential diagnosis, the sensitivity and specificity of which were 75.00 % and 90.00 % when the cutoff was > 0.6814. The accuracy of CSF Ig and quotient of Ig all exceed 0.90 in discerning NBD with damaged and intact blood-brain barrier (BBB). Clustering analyses divided NBD into two different phenotypes: one with BBB damage has lower Ig synthesis, the other with extra-synthesis in parenchymal sites but with intact BBB. MBP index is significantly correlated with kappa (KAP) index and lambda (LAM) index (r = 0.358, 0.575, P < 0.001), hinting the NBD pathogenesis of CNS demyelination in triggering excessive intrathecal Ig productions and humoral responses. CONCLUSIONS: IgA index acts as a potential diagnostic indicator in differentiating NBD from NIND and CNS-IIDD. Excessive immunoglobulin production induced by CNS inflammation and demyelination might be latent immunopathogenesis of NBD.


Subject(s)
Behcet Syndrome , Humans , Behcet Syndrome/cerebrospinal fluid , Behcet Syndrome/diagnosis , Behcet Syndrome/blood , Male , Female , Adult , Retrospective Studies , Middle Aged , Immunoglobulins/blood , Central Nervous System/pathology , Central Nervous System/metabolism , Central Nervous System/immunology , Young Adult , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/immunology , Central Nervous System Diseases/cerebrospinal fluid , Adolescent
5.
Plants (Basel) ; 13(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611530

ABSTRACT

The growth and development of apricot flower organs are severely impacted by spring frosts. To better understand this process, apricot flowers were exposed to temperatures ranging from 0 °C to -8 °C, including a control at 18 °C, in artificial incubators to mimic diverse low-temperature environments. We aimed to examine their physiological reactions to cold stress, with an emphasis on changes in phenotype, membrane stability, osmotic substance levels, and antioxidant enzyme performance. Results reveal that cold stress induces significant browning and cellular damage, with a sharp increase in browning rate and membrane permeability below -5 °C. Soluble sugars and proteins initially rise as osmoprotectants, but their content decreases at lower temperatures. Proline content consistently increases, suggesting a protective role. Antioxidant enzyme activities, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), exhibit a complex pattern, with initial increases followed by declines at more severe cold conditions. Correlation and principal component analyses highlight the interplay between these responses, indicating a multifaceted adaptation strategy. The findings contribute to the understanding of apricot cold tolerance and inform breeding efforts for improved crop resilience.

6.
Heliyon ; 10(7): e28405, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560178

ABSTRACT

Inactivated coronavirus disease 2019 (COVID-19) vaccines showed impaired immunogenicity in some autoimmune diseases, but it remains unclear in primary biliary cholangitis (PBC). This study aimed to explore the antibody response to the inactivated COVID-19 vaccine in individuals with PBC, as well as to evaluate coverage, safety, and attitudes toward the COVID-19 vaccine among them. Two cohorts of patients with PBC were enrolled in this study. One cohort was arranged to evaluate the immunogenicity of the inactivated COVID-19 vaccine, another cohort participated in an online survey. The titers of the anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG), neutralizing antibody (NAb) toward severe acute respiratory syndrome coronavirus 2 wild-type, and NAb toward Omicron BA.4/5 subvariants were detected to assess antibody response from the vaccine. After booster vaccination for more than six months, patients with PBC had significantly lowered levels of anti-RBD-specific IgG compared to HCs, and the inhibition rates of NAb toward wild-type also declined in individuals with PBC. The detected levels of NAb toward Omicron BA.4/5 were below the positive threshold in patients with PBC and HCs. Laboratory parameters did not significantly correlate with any of the three antibodies. The online survey revealed that 24% of patients with PBC received three COVID-19 vaccines, while 63% were unimmunized. Adverse effect rates after the first, second, and third vaccine doses were 6.1%, 10.3%, and 9.5%, respectively. Unvaccinated patients with PBC were more worried about the safety of the vaccine than those who were vaccinated (P = 0.004). As a result, this study fills the immunological assessment gap in patients with PBC who received inactivated COVID-19 vaccines.

7.
BMC Genomics ; 25(1): 325, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561670

ABSTRACT

BACKGROUND: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS: The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS: This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Epigenesis, Genetic , Cell Proliferation/genetics , Cell Differentiation/genetics , RNA, Messenger/metabolism , Muscle Development/genetics , Myoblasts , Luciferases/genetics , Luciferases/metabolism
8.
ACS Appl Mater Interfaces ; 16(8): 10805-10812, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38380891

ABSTRACT

Utilizing the mercury (Hg2+)-triggered deprotection of thioacetals to aldehyde groups, we constructed a water-soluble triphenylamine (TPA)-based polythioacetal PTA-TPA with thioacetal groups in the backbones for efficient sensing of Hg2+ in aqueous solutions. PTA-TPA is conveniently prepared by polycondensation of 3, 6-dioxa-1,8-octanedithiol (DODT) with 4-(N,N-diphenylamino) benzaldehyde (TPA-CHO) using thiol-terminated mPEG2k-SH as a capping agent. The interaction of Hg2+ with PTA-TPA activates the aggregation-induced emission (AIE) process of TPA-CHO molecules, which makes the emission enhanced, and the emission color changes to sky blue, while other metal ions do not interfere with the sensing process. PTA-TPA can be used as a highly selective and ultrafast detection system for Hg2+ with a low detection limit (LOD) of 9.88 nM and a fast response of less than 1 min. In addition, the prepared test strips report the presence of Hg2+ with an LOD as low as 1 × 10-5 M. Intracellular imaging applications have demonstrated that PTA-TPA acts as a biocompatible fluorescent probe for efficient Hg2+ sensing in HeLa cells. Overall, the PTA-TPA fluorescence probes have the characteristics of easy synthesis, cost-effective, ultrafast detection speed, high selectivity, and high sensitivity, which can be used in practical applications.

9.
Bioorg Chem ; 144: 107163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306825

ABSTRACT

The development of effective antibacterial drugs to combat bacterial infections, particularly the biofilm-related infections, remains a challenge. There are two important features of bacterial biofilms, which are well-known critical factors causing biofilms hard-to-treat in clinical, including the dense and impermeable extracellular polymeric substances (EPS) and the metabolically repressed dormant and persistent bacterial population embedded. These characteristics largely increase the difficulty for regular antibiotic treatment due to insufficient penetration into EPS. In addition, the dormant bacteria are insensitive to the growth-inhibiting mechanism of traditional antibiotics. Herein, we explore the potential of a series of new oligopyridinium-based oligomers bearing a multi-biomacromolecule targeting function as the potent bacterial biofilm eradication agent. These oligomers were rationally designed to be "charge-on-backbone" that can offer a special alternating amphiphilicity. This novel and unique feature endows high affinity to bacterial membrane lipids, DNAs as well as proteins. Such a broad multi-targeting nature of molecules not only enables its penetration into EPS, but also plays vital roles in the bactericidal mechanism of action that is highly effective against dormant and persistent bacteria. Our in vitro, ex vivo, and in vivo studies demonstrated that OPc3, one of the most effective derivatives, was able to offer excellent antibacterial potency against a variety of bacteria and effectively eliminate biofilms in zebrafish models and mouse wound biofilm infection models.


Subject(s)
Bacterial Infections , Zebrafish , Animals , Mice , Biofilms , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
10.
Heliyon ; 10(1): e23537, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169833

ABSTRACT

Introduction: Transcutaneous electrical acupoint stimulation (TEAS) has been proposed for postoperative urinary retention (POUR). This meta-analysis evaluated the effect of TEAS in preventing POUR. Methods: Databases were searched until February 6, 2023. Randomized controlled trials (RCTs) about TEAS for preventing POUR were included. The primary concern was the incidence of POUR, with post-void residual urine volume as a secondary outcome. Results: Fourteen studies with 2865 participants were identified. TEAS reduced the incidence of POUR (RR = 0.44, 95%CI = 0.33 to 0.58, P < 0.00001) and decreased the post-void residual urine volume (MD = -75.41 mL, 95%CI = -118.76 to -32.06, P = 0.0007). The preventive effect on POUR was found in patients receiving anorectal, gynecologic, orthopedic and biliary surgery, but not urinary surgery. Dilatational- and continuous-wave TEAS had a great outcome in preventing POUR. Intraoperative TEAS, preoperative and intraoperative TEAS, and postoperative TEAS were beneficial, and TEAS was more beneficial when compared with sham TEAS and blank control. It is nevertheless difficult to rule out publication bias. Conclusions: TEAS could prevent POUR. Due to insufficient evidence, multicenter, large-sample and high-quality RCTs should be conducted. (Registration:INPLASY202320095).

11.
Macromol Rapid Commun ; 45(6): e2300631, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158931

ABSTRACT

A water-soluble polymeric pyrene-based polythioacetal (PTA-Py) with thioacetal units in the main chain is simply synthesized by direct polycondensation of 3, 6-dioxa-1, 8-octanedithiol, 1-pyrene formaldehyde, and mPEG2k-SH. The probe PTA-Py shows a good fluorescence response to Hg2+ ions due to the Hg2+-promoted deprotection reaction of thioacetal groups to regenerate the original 1-pyrene formaldehyde compound. After adding Hg2+ to the PTA-Py solution, the fluorescence intensity (FI) gradually increases with increasing concentrations of Hg2+. Compared with other metal ions, the probe exhibits high sensitivity, good selectivity, and rapid response to Hg2+. The low detection limits are 12.3 nm in ethanol-PBS buffer and 13.3 nm in water, respectively. The results imply that the simply synthesized water-soluble polymeric probe had potential applications in the rapid detection of Hg2+ ions in aqueous solutions. Moreover, the polymeric PTA-Py shows high sensitivity for CH3Hg+ with detection limits of 26.5 nm in ethanol/PBS buffer. In addition, PTA-Py can efficiently detect Hg2+ ions in HeLa cells. The results demonstrate that a valuable method is developed for biocompatible polymeric sensors for Hg2+ ions in biological and environmental samples.


Subject(s)
Mercury , Humans , Fluorescent Dyes , HeLa Cells , Water , Pyrenes , Polymers , Ions , Spectrometry, Fluorescence , Ethanol , Formaldehyde
12.
Plants (Basel) ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960122

ABSTRACT

Alpinia plants are widely cherished for their vibrant and captivating flowers. The unique feature of this genus lies in their labellum, a specialized floral structure resulting from the fusion of two non-fertile staminodes. However, the intricate process of pigment formation, leading to distinct color patterns in the various labellum segments of Alpinia, remains a subject of limited understanding. In this study, labellum tissues of two Alpinia species, A. zerumbet (yellow-orange flowers) and A. oxyphylla (white-purple flowers), were sampled and analyzed through morphological structure observation, metabolite analysis, and transcriptome analyses. We found that hemispherical/spherical epidermal cells and undulate cell population morphology usually display darker flower colors, while flat epidermal cells and cell populations usually exhibit lighter flower colors. Metabolomic analysis identified a high concentration of anthocyanins, particularly peonidin derivatives, in segments with orange and purple pigments. Additionally, segments with yellow pigments showed significant accumulations of flavones, flavanols, flavanones, and xanthophylls. Furthermore, our investigation into gene expression levels through qRT-PCR revealed notable differences in several genes that participated in anthocyanin and carotenoid biosynthesis among the four pigmented segments. Collectively, these findings offer a comprehensive understanding of pigmentation in Alpinia flowers and serve as a valuable resource for guiding future breeding efforts aimed at developing Alpinia varieties with novel flower colors.

13.
Environ Sci Technol ; 57(49): 20726-20735, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38035574

ABSTRACT

δ18O is widely used to track nitrate (NO3-) formation but overlooks NO3 radical reactions with hydrocarbons (HCs), particularly in heavily emitting hazes. This study introduces high-time resolution Δ17O-NO3- as a powerful tool to quantify NO3- formation during five hazes in three cities. Results show significant differences between Δ17O-NO3- and δ18O-NO3- in identifying NO3- formation. δ18O-NO3- results suggested N2O5 hydrolysis (62.0-88.4%) as the major pathway of NO3- formation, while Δ17O-NO3- shows the NO3- formation contributions of NO2 + OH (17.7-66.3%), NO3 + HC (10.8-49.6%), and N2O5 hydrolysis (22.9-33.3%), revealing significant NO3 + HC contribution (41.7-56%) under severe pollution. Furthermore, NO3- formation varies with temperatures, NOx oxidation rate (NOR), and pollution levels. Higher NO2 + OH contribution and lower NO3 + HC contribution were observed at higher temperatures, except for low NOR haze where higher NO2 + OH contributions were observed at low temperatures (T ← 10 °C). This emphasizes the significance of NO2 + OH in emission-dominated haze. Contributions of NO2 + OH and NO3 + HC relate to NOR as positive (fP1 = 3.0*NOR2 - 2.4*NOR + 0.8) and negative (fP2 = -2.3*NOR2 + 1.8*NOR) quadratic functions, respectively, with min/max values at NOR = 0.4. At mild pollution, NO2 + OH (58.1 ± 22.2%) dominated NO3- formation, shifting to NO3 + HC (35.5 ± 16.3%) during severe pollution. Additionally, high-time resolution Δ17O-NO3- reveals that morning-evening rush hours and high temperatures at noon promote the contributions of NO3 + HC and NO2 + OH, respectively. Our results suggested that the differences in the NO3- pathway are attributed to temperatures, NOR, and pollution levels. Furthermore, high-time resolution Δ17O-NO3- is vital for quantifying NO3 + HC contribution during severe hazes.


Subject(s)
Environmental Monitoring , Nitrogen Dioxide , Nitrates/analysis , Cities , Nitrogen Isotopes/analysis , China
14.
Environ Sci Technol ; 57(43): 16500-16511, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37844026

ABSTRACT

Nitrogen-containing organic compounds (NOCs), a type of important reactive-nitrogen species, are abundant in organic aerosols in haze events observed in Northern China. However, due to the complex nature of NOCs, the sources, formation, and influencing factors are still ambiguous. Here, the molecular composition of organic matters (OMs) in hourly PM2.5 samples collected during a haze event in Northern China was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We found that CHON compounds (formulas containing C, H, O, and N atoms) dominated the OM fractions during the haze and showed high chemodiversity and transformability. Relying on the newly developed revised-workflow and oxidation-hydrolyzation knowledge for CHON compounds, 64% of the major aromatic CHON compounds (>80%) could be derived from the oxidization or hydrolyzation processes. Results from FT-ICR MS data analysis further showed that the aerosol liquid water (ALW)-involved aqueous-phase reactions are important for the molecular distribution of aromatic-CHON compounds besides the coal combustion, and the ALW-involved aromatic-CHON compound formation during daytime and nighttime was different. Our results improve the understanding of molecular composition, sources, and potential formation of CHON compounds, which can help to advance the understanding for the formation, evolution, and control of haze.


Subject(s)
Air Pollutants , Nitrogen Compounds , Nitrogen Compounds/analysis , Water , Mass Spectrometry/methods , Organic Chemicals/analysis , Nitrogen/analysis , China , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring
15.
J Am Chem Soc ; 145(42): 23372-23384, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37838963

ABSTRACT

Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Bacteria , Biology , Microbial Sensitivity Tests
16.
Foods ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835217

ABSTRACT

Shaoxing rice wine is a notable exemplar of Chinese rice wine. Its superior quality is strongly correlated with the indigenous natural environment. The results indicated that Firmicutes (75%), Actinobacteria (15%), Proteobacteria (5%), and Bacteroidetes (3%) comprised the prevailing bacterial groups. Among the main bacterial genera, Lactobacillus was the most abundant, accounting for 49.4%, followed by Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and Thermoactinomyces (1.1%). The dominant fungal phyla were Ascomycota and Zygomycota. Among the dominant genera, Saccharomyces (59.3%) prevailed as the most abundant, followed by Saccharomycopsis (10.7%), Aspergillus (7.1%), Thermomyces (6.2%), Rhizopus (4.9%), Rhizomucor (2.2%), and Mucor (1.3%). The findings demonstrate that the structure of the bacterial and fungal communities remains stable in the environment, with their diversity strongly influenced by climatic conditions. The continuous fluctuations in environmental factors, such as temperature, air pressure, humidity, rainfall, and light, significantly impact the composition and diversity of microbial populations, particularly the dominant bacterial community.

17.
ChemMedChem ; 18(19): e202300271, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37649155

ABSTRACT

RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.


Subject(s)
RNA , Small Molecule Libraries , Humans , RNA/metabolism , Ligands , Small Molecule Libraries/chemistry , Drug Discovery , RNA, Messenger , Proteins
18.
Heliyon ; 9(8): e18649, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560637

ABSTRACT

Purpose: The aim of this study was to investigate the protective effect of long non-coding lnc-PXMP4-2-4 on myocardial cell damage caused by acute myocardial infarction (AMI). Methods: Peripheral blood mononuclear cells (PBMC) were collected from 24 patients with AMI on the day of admission, the first day after percutaneous coronary intervention (PCI) and the third day after surgery, and 24 patients with clinical control group. Real-time quantitative PCR(QRT-PCR) was used to detect the expression of related genes. Then in human cardiomyocytes (AC16), Cell Counting Kit-8 (CCK-8) was used to determine cell viability, lactate dehydrogenase release assay (LDH) was used to determine the release of lactate dehydrogenase, PCR was used to detect the expression of genes, cell death was detected by flow cytometry, and the expression of related proteins was measured by Western blot. The effect of lnc-PXMP4-2-4 was further studied by silencing and overexpressing lnc-PXMP4-2-4. Results: Compared with clinical control group, the expression of lnc-PXMP4-2-4 in PBMC of AMI patients was significantly higher than it. Compared with pre-operation, the expression of lnc-PXMP4-2-4 was significantly up-regulated on day 1 after PCI, and recovered to pre-operation level on day 3 after surgery. In AC16 cells, lnc-PXMP4-2-4 inhibited the proliferation of AC16, promoted the release of LDH and increased cell death, aggravated the cardiomyocyte injury caused by H2O2, and inhibited the expression of JAK2 and STAT3 mRNA and protein. The up-regulation of lnc-PXMP-4-2-4 had the opposite effect. In addition, the inhibition of the signal pathway by JAK2/STAT3 pathway inhibitor AG490 partially weakened the enhanced viability of AC16 cells, decreased LDH release and apoptosis induced by lnc-PXMP4-2-4 overexpression, increased Bcl-2 expression and down-regulated Bax expression. Conclusion: Therefore, we conclude that lnc-PXMP4-2-4 protects cardiomyocytes from injury by activating the JAK2/STAT3 signaling pathway.

19.
Atherosclerosis ; 380: 117195, 2023 09.
Article in English | MEDLINE | ID: mdl-37586220

ABSTRACT

BACKGROUND AND AIMS: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS: ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS: Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS: These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Mice , Animals , Vimentin/genetics , Vimentin/metabolism , Muscle, Smooth, Vascular/pathology , Atherosclerosis/pathology , Phenotype , Apolipoproteins E/genetics , Myocytes, Smooth Muscle/pathology , Cell Proliferation , Cells, Cultured
20.
J Diabetes ; 15(11): 931-943, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37518861

ABSTRACT

BACKGROUND: The immunogenicity of booster inactivated COVID-19 vaccines in patients with type 2 diabetes mellitus (T2DM) has remained unclear. Our study aims to investigate the antibody response to inactivated COVID-19 vaccine following booster vaccination in patients with T2DM. METHODS: A total of 201 patients with T2DM and 102 healthy controls (HCs) were enrolled. The levels of anti-SARS-CoV-2 total antibodies, anti-receptor-binding domain (RBD)-specific IgG, neutralizing antibody (NAb) toward SARS-CoV-2 wild type (WT), and NAb toward SARS-CoV-2 Omicron BA.4/5 subvariant were measured to evaluate the vaccine-induced immunological responses. RESULTS: The titers of anti-RBD-specific IgG (p = 0.018) and inhibition rates of NAb toward WT (p = 0.007) were significantly decreased in patients with T2DM compared to HCs after booster vaccination for more than 6 months. Both HCs and patients with T2DM showed poor resistance against BA.4/5 due to the detected inhibition rates being lower than the positive threshold. The levels of anti-RBD-specific IgG were positively associated with the proportions of CD3+ CD4- CD8- T cells (p = 0.045), and patients with T2DM who had anti-RBD-specific IgG positivity showed higher proportions of CD3+ CD4- CD8- T cells compared to those negative (p = 0.005). CONCLUSIONS: Patients with T2DM showed impaired antibody responses after booster vaccination for more than 6 months. Decreased anti-BA.4/5 responses give rise to the possibility of breakthrough infections for both patients with T2DM and HCs.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19 Vaccines , Antibody Formation , Immunization, Secondary , COVID-19/prevention & control , SARS-CoV-2 , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL
...