Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Plant ; 175(1): e13867, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36708240

ABSTRACT

Anthocyanins are responsible for the intensity of color in plants; however, the systematic mechanisms underlying the color differences in the fruit of Ailanthus altissima remain unknown. Therefore, this study aims to analyze the transcriptomes of the white and red fruit of A. altissima by screening and validating the key genes involved in flavonoid and anthocyanin biosynthesis. Samples of A. altissima fruit were collected 30, 45, and 60 days after flowering, and their pigment and sugar content were determined. The anthocyanin content was significantly higher in red than in white fruits. Transcriptome analysis was also performed on the fruit samples, 73,807 unigenes were assembled and annotated to seven databases. Twenty-one co-expressed modules were identified via weighted gene co-expression network analysis, of which two were associated with flavonoids and anthocyanins. Furthermore, in three growth stages, 126, 30, and 124 differentially expressed genes were screened between white and red fruit. Genes involved in flavonoid and anthocyanin metabolism were identified. AaDFR (A. altissima bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase) and AaANS (A. altissima anthocyanidin synthase) were associated with flavonoid and anthocyanin metabolism. Members of the AaDFR and AaANS families were also identified, and their basic physicochemical characteristics, conserved domains, motif compositions, phylogenetics, and expression levels were analyzed. The overexpression of AaDFR and AaANS in transgenic Arabidopsis significantly increased the content of seed and foliar flavonoids and anthocyanins. The study elucidated the different mechanisms underlying fruit color development and provided insight into A. altissima plants breeding with commercially desirable properties.


Subject(s)
Ailanthus , Anthocyanins , Anthocyanins/metabolism , Fruit/genetics , Ailanthus/genetics , Ailanthus/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Plant , Color
2.
BMC Genomics ; 23(1): 438, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698031

ABSTRACT

BACKGROUND: Elevated temperature and drought stress have substantial impacts on fruit quality, especially in terms of sugar metabolism and content. ß-Amylase (BAM) plays a critical role in regulating jujube fruit sugar levels and abiotic stress response. Nevertheless, little is known about the regulatory functions of the BAM genes in jujube fruit. RESULTS: Nine jujube BAM genes were identified, clustered into four groups, and characterized to elucidate their structure, function, and distribution. Multiple sequence alignment and gene structure analysis showed that all ZjBAM genes contain Glu-186 and Glu-380 residues and are highly conserved. Phylogenetic and synteny analysis further indicated that the ZjBAM gene family is evolutionarily conserved and formed collinear pairs with the BAM genes of peach, apple, poplar, Arabidopsis thaliana, and cucumber. A single tandem gene pair was found within the ZjBAM gene family and is indicative of putative gene duplication events. We also explored the physicochemical properties, conserved motifs, and chromosomal and subcellular localization of ZjBAM genes as well as the interaction networks and 3D structures of ZjBAM proteins. A promoter cis-acting element analysis suggested that ZjBAM promoters comprise elements related to growth, development, phytohormones, and stress response. Furthermore, a metabolic pathways annotation analysis showed that ZjBAMs are significantly upregulated in the starch and sucrose metabolism, thereby controlling starch-maltose interconversion and hydrolyzing starch to maltose. Transcriptome and qRT-PCR analyses revealed that ZjBAMs respond positively to elevated temperature and drought stress. Specifically, ZjBAM1, ZjBAM2, ZjBAM5, and ZjBAM6 are significantly upregulated in response to severe drought. Bimolecular fluorescence complementation analysis demonstrated ZjBAM1-ZjAMY3, ZjBAM8-ZjDPE1, and ZjBAM7-ZjDPE1 protein interactions that were mainly present in the plasma membrane and nucleus. CONCLUSION: The jujube BAM gene family exhibits high evolutionary conservation. The various expression patterns of ZjBAM gene family members indicate that they play key roles in jujube growth, development, and abiotic stress response. Additionally, ZjBAMs interact with α-amylase and glucanotransferase. Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas.


Subject(s)
Ziziphus , beta-Amylase , Fruit/genetics , Gene Expression Regulation, Plant , Maltose/metabolism , Phylogeny , Plant Proteins/metabolism , Starch/metabolism , Stress, Physiological/genetics , Sugars/metabolism , Ziziphus/genetics , beta-Amylase/genetics , beta-Amylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL