Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 7(6): e0040922, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36218345

ABSTRACT

Methicillin-susceptible Staphylococcus aureus (MSSA) is a more prevalent neonatal intensive care unit (NICU) pathogen than methicillin-resistant S. aureus (MRSA). However, the introduction and spread of MSSA, the role of systematic decolonization, and optimal infection prevention and control strategies remain incompletely understood. We previously screened infants hospitalized in a university-affiliated level III to IV NICU twice monthly over 18 months for S. aureus colonization and identified several prevalent staphylococcal protein A (spa) types. Here, we performed whole-genome sequencing (WGS) and phylogenetic comparisons of 140 isolates from predominant spa types t279, t1451, and t571 to examine possible transmission routes and identify genomic and epidemiologic features associated with the spread of dominant clones. We identified two major MSSA clones: sequence type 398 (ST398), common in the local community, and ST1898, not previously encountered in the region. ST398 NICU isolates formed distinct clusters with closely related community isolates from previously published data sets, suggesting multiple sources of acquisition, such as family members or staff, including residents of the local community. In contrast, ST1898 isolates were nearly identical, pointing to clonal expansion within the NICU. Almost all ST1898 isolates harbored plasmids encoding mupirocin resistance (mupA), suggesting an association between the proliferation of this clone and decolonization efforts with mupirocin. Comparative genomics indicated genotype-specific pathways of introduction and spread of MSSA via community-associated (ST398) or health care-associated (ST1898) sources and the potential role of mupirocin resistance in dissemination of ST1898. Future surveillance efforts could benefit from routine genotyping to inform clone-specific infection prevention strategies. IMPORTANCE Methicillin-susceptible Staphylococcus aureus (MSSA) is a significant pathogen in neonates. However, surveillance efforts in neonatal intensive care units (NICUs) have focused primarily on methicillin-resistant S. aureus (MRSA), limiting our understanding of colonizing and infectious MSSA clones which are prevalent in the NICU. Here, we identify two dominant colonizing MSSA clones during an 18-month surveillance effort in a level III to IV NICU, ST398 and ST1898. Using genomic surveillance and phylogenetic analysis, coupled with epidemiological investigation, we found that these two sequence types had distinct modes of spread, namely the suggested exchange with community reservoirs for ST398 and the contribution of antibiotic resistance to dissemination of ST1898 in the health care setting. This study highlights the additional benefits of whole-genome surveillance for colonizing pathogens, beyond routine species identification and genotyping, to inform targeted infection prevention strategies.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Infant, Newborn , Infant , Staphylococcus aureus/genetics , Intensive Care Units, Neonatal , Methicillin-Resistant Staphylococcus aureus/genetics , Mupirocin , Methicillin , Staphylococcal Infections/prevention & control , Phylogeny , Genomics
2.
Clin Infect Dis ; 67(6): 905-912, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29718144

ABSTRACT

Background: Multidrug-resistant organisms (MDROs) are an important cause of morbidity and mortality after solid organ transplantation. We aimed to characterize MDRO colonization dynamics and infection in liver transplant (LT) recipients through innovative use of active surveillance and whole-genome sequencing (WGS). Methods: We prospectively enrolled consecutive adult patients undergoing LT from March 2014 to March 2016. Fecal samples were collected at multiple timepoints from time of enrollment to 12 months posttransplant. Samples were screened for carbapenem-resistant Enterobacteriaceae (CRE), Enterobacteriaceae resistant to third-generation cephalosporins (Ceph-RE), and vancomycin-resistant enterococci. We performed WGS of CRE and selected Ceph-RE isolates. We also collected clinical data including demographics, transplant characteristics, and infection data. Results: We collected 998 stool samples and 119 rectal swabs from 128 patients. MDRO colonization was detected in 86 (67%) patients at least once and was significantly associated with subsequent MDRO infection (0 vs 19.8%, P = .002). Child-Turcotte-Pugh score at LT and duration of post-LT hospitalization were independent predictors of both MDRO colonization and infection. Temporal dynamics differed between MDROs with respect to onset of colonization, clearance, and infections. We detected an unexpected diversity of CRE colonizing isolates and previously unrecognized transmission that spanned Ceph-RE and CRE phenotypes, as well as a cluster of mcr-1-producing isolates. Conclusions: Active surveillance and WGS showed that MDRO colonization is a highly dynamic and complex process after LT. Understanding that complexity is crucial for informing decisions regarding MDRO infection control, use of therapeutic decolonization, and empiric treatment regimens.


Subject(s)
Bacteria/genetics , Carrier State/microbiology , Drug Resistance, Multiple, Bacterial , Genetic Variation , Liver Transplantation , Aged , Bacteria/drug effects , Bacteria/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Cross Infection , Feces/microbiology , Female , Genomics , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Middle Aged , Prospective Studies , Sentinel Surveillance , Transplant Recipients , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Whole Genome Sequencing
3.
Appl Plant Sci ; 4(4)2016 Apr.
Article in English | MEDLINE | ID: mdl-27144103

ABSTRACT

PREMISE OF THE STUDY: The Million Orchid Project at Fairchild Tropical Botanic Garden is an initiative to propagate native orchids for reintroduction into Miami's urban landscapes. The aim of this study was to develop microsatellites for Encyclia tampensis and Cyrtopodium punctatum (Orchidaceae). METHODS AND RESULTS: Ten microsatellites were developed for each species. For E. tampensis sampled from the natural population, allele numbers ranged from one to four, with an average observed heterozygosity (H o) of 0.314 and average expected heterozygosity (H e) of 0.281. For the individuals from cultivation, allele numbers ranged from one to six, with an average H o of 0.35 and an average H e of 0.224. For C. punctatum, allele numbers ranged from one to three, with an average H o of 0.257 and an average H e of 0.272. CONCLUSIONS: These microsatellites will be used to assess the genetic diversity of natural and cultivated populations with the intention of guiding genetic breeding under the Million Orchid Project.

SELECTION OF CITATIONS
SEARCH DETAIL
...