Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 35(25)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38471141

ABSTRACT

An innovative approach is proposed to passivate the existing defects from metal oxide semiconductors by functionalizing nontoxic bio-based substances. As a demonstration, we synthesized zinc oxide nanorods (ZnO NRs) using a hydrothermal method and incorporated chicken egg white (albumen) as a passivator to the defects. X-ray diffraction analysis of ZnO NRs shows enhanced quality and crystallinity features after incorporating albumen. XPS measurements were performed not only to introduce the chemical bonding between the albumen and the bare ZnO NRs but also specifically provide evidence of successful capping and defect passivation to the surface layer of ZnO NRs. It was observed that when the albumen was annealed, it formed sulfhydryl groups and disulfide bonds (which created disulfide bridges) from the chemical reaction in irreversible thermal denaturation. Steady-state photoluminescence of ZnO NRs showed two emission bands, i.e. near band-edge emission (NBE) and deep-level emission (DL). The NBE is significantly improved as compared to DL emission after capping and annealing the albumen, while the quenching of DL emission confirmed the reduced defects arising from the surface of ZnO NRs. The advantages and enhanced characteristics of the albumen-capped ZnO NRs led to fabricating a stable and highly efficient light-emitting device. This work opens the great potential of utilizing nontoxic and low-cost biomaterials in passivating the defects of metal oxide nanomaterials for the development of bio-inspired and stable optoelectronic devices.

2.
Nanotechnology ; 35(12)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38064741

ABSTRACT

Gallium oxide (Ga2O3) is a promising wide bandgap semiconductor that is viewed as a contender for the next generation of high-power electronics due to its high theoretical breakdown electric field and large Baliga's figure of merit. Here, we report a facile route of synthesizingß-Ga2O3via direct oxidation conversion using solution-processed two-dimensional (2D) GaS semiconducting nanomaterial. Higher order of crystallinity in x-ray diffraction patterns and full surface coverage formation in scanning electron microscopy images after annealing were achieved. A direct and wide bandgap of 5 eV was calculated, and the synthesizedß-Ga2O3was fabricated as thin film transistors (TFT). Theß-Ga2O3TFT fabricated exhibits remarkable electron mobility (1.28 cm2Vs-1) and a good current ratio (Ion/Ioff) of 2.06 × 105. To further boost the electrical performance and solve the structural imperfections resulting from the exfoliation process of the 2D nanoflakes, we also introduced and doped graphene inß-Ga2O3TFT devices, increasing the electrical device mobility by ∼8-fold and thereby promoting percolation pathways for the charge transport. We found that electron mobility and conductivity increase directly with the graphene doping concentration. From these results, it can be proved that theß-Ga2O3networks have excellent carrier transport properties. The facile and convenient synthesis method successfully developed in this paper makes an outstanding contribution to applying 2D oxide materials in different and emerging optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL