Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Phys Imaging Radiat Oncol ; 29: 100536, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303922

Background and purpose: Glioblastoma is one of the most common and aggressive primary brain tumours in adults. Though radiation therapy (RT) techniques have progressed significantly in recent decades, patient survival has seen little improvement. However, an area of promise is the use of fluorine-18-fluoroethyltyrosine positron-emission-tomography (18F-FET PET) imaging to assist in RT target delineation. This retrospective study aims to assess the impact of 18F-FET PET scan timing on the resultant RT target volumes and subsequent RT plans in post-operative glioblastoma patients. Materials and Methods: The imaging and RT treatment data of eight patients diagnosed with glioblastoma and treated at a single institution were analysed. Before starting RT, each patient had two 18F-FET-PET scans acquired within seven days of each other. The information from these 18F-FET-PET scans aided in the creation of two novel target volume sets. The new volumes and plans were compared with each other and the originals. Results: The median clinical target volume (CTV) 1 was statistically smaller than CTV 2. The median Dice score for the CTV1/CTV2 was 0.98 and, of the voxels that differ (median 6.5 cc), 99.7% were covered with a 5 mm expansion. Overall organs at risk (OAR) and target dosimetry were similar in the PTV1 and PTV2 plans. Conclusion: Provided the 18F-FET PET scan is acquired within two weeks of the RT planning and a comprehensive approach is taken to CTV delineation, the timing of scan acquisition has minimal impact on the resulting RT plan.

2.
Phys Med Biol ; 66(21)2021 10 28.
Article En | MEDLINE | ID: mdl-34644696

Intro.Current radiation therapy (RT) planning guidelines handle uncertainties in RT using geometric margins. This approach is simple to use but oversimplifies complex underlying processes and is cumbersome for non-homogeneous dose prescriptions. In this work, we characterize the performance of a novel probabilistic target definition and planning (PTP) approach, which uses voxel-level tumor likelihood information in treatment plan optimization.Methods.We expanded a treatment planning system with probabilistic therapy planning functionality that utilizes non-binary target maps (TM) as voxel-level input to dose plan optimization. Different dose plans were calculated and compared for twelve prostate cancer patients with multiparametric magnetic resonance imaging derived TMs. Dose plans were created using both classical and PTP approaches for uniform and integrated dose boost prescriptions. Dose performance between the different approaches was compared using dose benchmarks on target and organ-at-risk (OAR) volumes.Results.Over all dose metrics, PTP was shown to be comparable to classical planning. For plans of uniform dose prescription, the PTP approach created plans within 1 Gy of the classical planning approach across all dose metrics, with no significant differences (p > 0.2). For plans with the integrated dose boost, PTP plans exhibited higher dose heterogeneity, but still showed target doses comparable to the classical approach, without increasing doses to OAR.Conclusion.In this work we introduce direct incorporation of probabilistic target definition into treatment planning. This treatment planning approach can produce both uniform dose plans and plans with integrated dose boosts that are comparable to ones created using classical dose planning. PTP is a flexible way to optimize external beam radiotherapy, as it is not limited by the use of margins. PTP can produce dose plans equivalent to classical planning, while also allows for greater versatility in dose prescription and direct incorporation of patient target definition uncertainty into treatment planning.


Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Male , Organs at Risk , Probability , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
3.
Biomed Phys Eng Express ; 7(6)2021 09 30.
Article En | MEDLINE | ID: mdl-34534974

Purpose.To investigate image intensity histograms as a potential source of useful imaging biomarkers in both a clinical example of detecting immune-related colitis (irColitis) in18F-FDG PET/CT images of immunotherapy patients and an idealized case of classifying digital reference objects (DRO).Methods.Retrospective analysis of bowel18F-FDG uptake in N = 40 patients receiving immune checkpoint inhibitors was conducted. A CNN trained to segment the bowel was used to generate the histogram of bowel18F-FDG uptake, and percentiles of the histogram were considered as potential metrics for detecting inflammation associated with irColitis. A model of the colon was also considered using cylindrical DRO. Classification of DRO with different intensity distributions was undertaken under varying geometry and noise settings.Results.The most predictive biomarker of irColitis was the 95th percentile of the bowel SUV histogram (SUV95%). Patients later diagnosed with irColitis had a significantly higher increase in SUV95%from baseline to first on-treatment PET than patients who did not experience irColitis (p = 0.02). An increase in SUV95%> + 40% separated pre-irColitis change from normal variability with a sensitivity of 75% and specificity of 88%. Furthermore, histogram percentiles were ideal metrics for classifying 'hot center' and 'cold center' DRO, and were robust to varying DRO geometry and noise, and to the presence of spoiler volumes unrelated to the detection task.Conclusions.The 95th percentile of the bowel SUV histogram was the optimal metric for detecting irColitis on18F-FDG PET/CT. Image intensity histograms are a promising source of imaging biomarkers for clinical tasks.


Colitis , Fluorodeoxyglucose F18 , Biomarkers , Colitis/diagnosis , Humans , Positron Emission Tomography Computed Tomography , Retrospective Studies
4.
Biomed Phys Eng Express ; 7(3)2021 04 30.
Article En | MEDLINE | ID: mdl-33887712

Purpose: O-(2-[18F]fluoroethyl)-L-tyrosine (FET), a PET radiotracer of amino acid uptake, has shown potential for diagnosis and treatment planning in patients with glioblastoma (GBM). To improve quantitative assessment of FET PET imaging, we evaluated the repeatability of uptake of this tracer in patients with GBM.Methods: Test-retest FET PET imaging was performed on 8 patients with histologically confirmed GBM, who previously underwent surgical resection of the tumour. Data were acquired according to the protocol of a prospective clinical trial validating FET PET as a clinical tool in GBM. SUVmean, SUVmaxand SUV98%metrics were extracted for both test and retest images and used to calculate 95% Bland-Altman limits of agreement (LoA) on lesion-level, as well as on volumes of varying sizes. Impact of healthy brain normalization on repeatability of lesion SUV metrics was evaluated.Results: Tumour LoA were [0.72, 1.46] for SUVmeanand SUVtotal, [0.79,1.23] for SUVmax, and [0.80,1.18] for SUV98%. Healthy brain LoA were [0.80,1.25] for SUVmean, [0.80,1.25] for SUVmax, and [0.81,1.23] for SUV98%. Voxel-level SUV LoA were [0.76, 1.32] for tumour volumes and [0.80, 1.25] for healthy brain. When sampled over maximum volume, SUV LoA were [0.90,1.12] for tumour and [0.92,1.08] for healthy brain. Normalization of uptake using healthy brain volumes was found to improve repeatability, but not after normalization volume size of about 15 cm3.Conclusions Advances in Knowledge and Implications for Patient Care: Repeatability of FET PET is comparable to existing tracers such as FDG and FLT. Healthy brain uptake is slightly more repeatable than uptake of tumour volumes. Repeatability was found to increase with sampled volume. SUV normalization between scans using healthy brain uptake should be performed using volumes at least 15 cm3in size to ensure best imaging repeatability.


Glioblastoma , Brain/diagnostic imaging , Glioblastoma/diagnostic imaging , Humans , Positron-Emission Tomography , Prospective Studies , Tyrosine
...