Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Dalton Trans ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233530

ABSTRACT

Herein, we describe the synthesis and characterization of a series of thiosemicarbazone platinacycles. Their activity towards HCT116 and A2780 cancer cell lines as well as normal fibroblasts was explored and conclusions about the influence of their structures were drawn based on the results. Ligands L1-3, tetranuclear compounds [Pt(L1-3)]4, [Pt(L1-3)(PPh3)], and [Pt(L1-L3)2{Ph2P(CH2)4PPh2}], and phosphine derivatives, were deemed unpromising owing to their lack of activity. However, mono-coordinated diphosphine complexes [Pt(L1-L3)(Ph2PCH2PPh2-P)] showed high selectivity and low IC50 values, and their antiproliferative activity was further studied. The three studied derivatives 3a, 3b and 3c showed a fast internalization of HCT116 colorectal cancer cells with similar IC50 values, which induced a depolarization of mitochondrial membrane potential, with the subsequent triggering of apoptosis and autophagy in the case of 3c. In the case of compounds 3a and 3b, cell death mechanisms (extrinsic and intrinsic apoptosis, respectively) were triggered via the induction of reactive oxygen species (ROS). The three compounds were not toxic to a chicken embryo in vivo (after 48 h), and, importantly, showed an anti-angiogenic potential after exposure to the IC50 of compounds 3a, 3b and 3c.

2.
Front Chem ; 12: 1379914, 2024.
Article in English | MEDLINE | ID: mdl-39170866

ABSTRACT

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.

3.
Nanoscale ; 16(32): 15176-15195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39052238

ABSTRACT

In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for "opening and closing" cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.


Subject(s)
Cell Membrane , Magnetite Nanoparticles , Humans , Cell Membrane/metabolism , Magnetite Nanoparticles/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/chemistry , Cell Membrane Permeability , Hyperthermia, Induced , Fluorescent Dyes/chemistry , Transfection , HeLa Cells , Endocytosis , Magnetic Fields
4.
ChemMedChem ; : e202400225, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880774

ABSTRACT

Azaindole scaffold is a privileged structure in medicinal chemistry and some derivatives have demonstrated to be potential anticancer drugs. Herein, a set of novel azaindoles, comprising the four regioisomers, bearing a morpholine (azaindoles 3a-d) and N-methyl-N-benzylamine (azaindoles 4a-d) groups were prepared. Among these compounds, azaindoles 4 exhibited higher cytotoxicity against the ovarian cancer cell line A2780 and normal dermal fibroblasts compared to azaindoles 3. Furthermore, azaindoles 4b and 4c promoted a delay in the cell cycle of the cancer cell line, inspiring an investigation into the intracellular localization of these derivatives.

5.
Talanta ; 274: 126052, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608633

ABSTRACT

Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.


Subject(s)
Adenocarcinoma of Lung , Gold , Lung Neoplasms , Metal Nanoparticles , MicroRNAs , Humans , MicroRNAs/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , A549 Cells , Gene Silencing
6.
J Med Chem ; 67(7): 5813-5836, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38518246

ABSTRACT

Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Coordination Complexes , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Apoptosis , Cell Proliferation , Crystallography, X-Ray
7.
Inorg Chem ; 63(13): 5783-5804, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38502532

ABSTRACT

In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ovarian Neoplasms , Animals , Chick Embryo , Humans , Female , Cell Line, Tumor , Antineoplastic Agents/chemistry , Platinum/pharmacology , Cobalt/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Apoptosis
8.
Front Bioeng Biotechnol ; 12: 1320729, 2024.
Article in English | MEDLINE | ID: mdl-38410164

ABSTRACT

Three-dimensional (3D) cell culture using tumor spheroids provides a crucial platform for replicating tissue microenvironments. However, effective gene modulation via nanoparticle-based transfection remains a challenge, often facing delivery hurdles. Gold nanoparticles (AuNPs) with their tailored synthesis and biocompatibility, have shown promising results in two-dimensional (2D) cultures, nevertheless, they still require a comprehensive evaluation before they can reach its full potential on 3D models. While 2D cultures offer simplicity and affordability, they lack physiological fidelity. In contrast, 3D spheroids better capture in vivo conditions, enabling the study of cell interactions and nutrient distribution. These models are essential for investigating cancer behavior, drug responses, and developmental processes. Nevertheless, transitioning from 2D to 3D models demands an understanding of altered internalization mechanisms and microenvironmental influences. This study assessed ASO-AuNP conjugates for silencing the c-MYC oncogene in 2D cultures and 3D tumor spheroids, revealing distinctions in gene silencing efficiency and highlighting the microenvironment's impact on AuNP-mediated gene modulation. Herein, we demonstrate that increasing the number of AuNPs per cell by 2.6 times, when transitioning from a 2D cell model to a 3D spheroid, allows to attain similar silencing efficiencies. Such insights advance the development of targeted gene therapies within intricate tissue-like contexts.

9.
Molecules ; 28(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959872

ABSTRACT

BACKGROUND: Antimicrobial resistance is one of the most pressing health issues of our time. The increase in the number of antibiotic-resistant bacteria allied to the lack of new antibiotics has contributed to the current crisis. It has been predicted that if this situation is not dealt with, we will be facing 10 million deaths due to multidrug resistant infections per year by 2050, surpassing cancer-related deaths. This alarming scenario has refocused attention into researching alternative drugs to treat multidrug-resistant infections. AIMS: In this study, the antimicrobial activities of four manganese complexes containing 1,2,3,-triazole and clotrimazole ligands have been evaluated. It is known that azole antibiotics coordinated to manganese tricarbonyl complexes display interesting antimicrobial activities against several microbes. In this work, the effect of the introduction of 1,2,3,-triazole-derived ligands in the [Mn(CO)3(clotrimazole)] fragment has been investigated against one Gram-positive bacterium and five Gram-negative bacteria. METHODS: The initial antimicrobial activity of the above-mentioned complexes was assessed by determining the minimum inhibitory and bactericidal concentrations using the broth microdilution method. Growth curves in the presence and absence of the complexes were performed to determine the effects of these complexes on the growth of the selected bacteria. A possible impact on cellular viability was determined by conducting the MTS assay on human monocytes. RESULTS: Three of the Mn complexes investigated (4-6) had good antimicrobial activities against all the bacteria tested, with values ranging from 1.79 to 61.95 µM with minimal toxicity. CONCLUSIONS: Due to the increased problem of antibiotic resistance and a lack of new antibacterial drugs with no toxicity, these results are exciting and show that these types of complexes can be an avenue to pursue in the future.


Subject(s)
Manganese , Triazoles , Humans , Triazoles/pharmacology , Manganese/pharmacology , Clotrimazole/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Bacteria , Microbial Sensitivity Tests
10.
Antibiotics (Basel) ; 12(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37627752

ABSTRACT

The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through α-amylase and α-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 ± 32.5 µM TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNFα gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes α-amylase (IC50 of 199.3 ± 0.9 µg/mL) and α-glucosidase (IC20 of 270.6 ± 6.0 µg/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.

11.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513903

ABSTRACT

FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs' strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs' strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.

12.
J Med Chem ; 66(13): 8580-8599, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37311060

ABSTRACT

The work is focused on anticancer properties of dipicolinate (dipic)-based vanadium(IV) complexes [VO(dipic)(N∩N)] bearing different diimines (2-(1H-imidazol-2-yl)pyridine, 2-(2-pyridyl)benzimidazole, 1,10-phenanthroline-5,6-dione, 1,10-phenanthroline, and 2,2'-bipyridine), as well as differently 4,7-substituted 1,10-phenanthrolines. The antiproliferative effect of V(IV) systems was analyzed in different tumors (A2780, HCT116, and HCT116-DoxR) and normal (primary human dermal fibroblasts) cell lines, revealing a high cytotoxic effect of [VO(dipic)(N∩N)] with 4,7-dimethoxy-phen (5), 4,7-diphenyl-phen (6), and 1,10-phenanthroline (8) against HCT116-DoxR cells. The cytotoxicity differences between these complexes can be correlated with their different internalization by HCT116-DoxR cells. Worthy of note, these three complexes were found to (i) induce cell death through apoptosis and autophagy pathways, namely, through ROS production; (ii) not to be cytostatic; (iii) to interact with the BSA protein; (iv) do not promote tumor cell migration or a pro-angiogenic capability; (v) show a slight in vivo anti-angiogenic capability, and (vi) do not show in vivo toxicity in a chicken embryo.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ovarian Neoplasms , Animals , Chick Embryo , Female , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Coordination Complexes/toxicity , Phenanthrolines/pharmacology , Vanadium
13.
J Inorg Biochem ; 245: 112255, 2023 08.
Article in English | MEDLINE | ID: mdl-37196411

ABSTRACT

The ruthenium arene fragment is a rich source for the design of anticancer drugs; in this design, the co-ligand is a critical factor for obtaining effective anticancer complexes. In comparison with other types of ligands, N-heterocyclic carbenes (NHCs) have been less explored, despite the versatility in structural modifications and the marked stabilization of metal ions, being these characteristics important for the design of metal drugs. However, notable advances have been made in the development of NHC Ruthenium arene as anticancer agents. These advances include high antitumor activities, proven both in in vitro and in in vivo models and, in some cases, with marked selectivity against tumorigenic cells. The versatility of the structure has played a fundamental role, since they have allowed a selective interaction with their molecular targets through, for example, bio-conjugation with known anticancer molecules. For this reason, the structure-activity relationship of the imidazole, benzimidazole, and abnormal NHC ruthenium (II) η6-arene complexes have been studied. Taking into account this study, several synthetic aspects are provided to contribute to the next generations of this kind of complexes. Moreover, in recent years nanotechnology has provided innovative nanomedicines, where half-sandwich Ruthenium(II) complexes are paving their way. In this review, the recent developments in nanomaterials functionalized with Ruthenium complexes for targeted drug delivery to tumors will also be highlighted.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Molecular Structure , Ruthenium/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Ligands
14.
Anal Bioanal Chem ; 415(14): 2849-2863, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37097304

ABSTRACT

The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor's temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Prognosis , Polymerase Chain Reaction/methods , Mutation , Biomarkers, Tumor/genetics
15.
Pharmaceutics ; 15(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986603

ABSTRACT

Neoangiogenesis is generally correlated with poor prognosis, due to the promotion of cancer cell growth, invasion and metastasis. The progression of chronic myeloid leukemia (CML) is frequently associated with an increased vascular density in bone marrow. From a molecular point of view, the small GTP-binding protein Rab11a, involved in the endosomal slow recycling pathway, has been shown to play a crucial role for the neoangiogenic process at the bone marrow of CML patients, by controlling the secretion of exosomes by CML cells, and by regulating the recycling of vascular endothelial factor receptors. The angiogenic potential of exosomes secreted by the CML cell line K562 has been previously observed using the chorioallantoic membrane (CAM) model. Herein, gold nanoparticles (AuNPs) were functionalized with an anti-RAB11A oligonucleotide (AuNP@RAB11A) to downregulate RAB11A mRNA in K562 cell line which showed a 40% silencing of the mRNA after 6 h and 14% silencing of the protein after 12 h. Then, using the in vivo CAM model, these exosomes secreted by AuNP@RAB11A incubated K562 did not present the angiogenic potential of those secreted from untreated K562 cells. These results demonstrate the relevance of Rab11 for the neoangiogenesis mediated by tumor exosomes, whose deleterious effect may be counteracted via targeted silencing of these crucial genes; thus, decreasing the number of pro-tumoral exosomes at the tumor microenvironment.

16.
Polymers (Basel) ; 15(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36850075

ABSTRACT

Chitin-glucan complex (CGC) hydrogels were fabricated by coagulation of the biopolymer from an aqueous alkaline solution, and their morphology, swelling behavior, mechanical, rheological, and biological properties were studied. In addition, their in vitro drug loading/release ability and permeation through mimic-skin artificial membranes (Strat-M) were assessed. The CGC hydrogels prepared from 4 and 6 wt% CGC suspensions (Na51*4 and Na51*6 hydrogels, respectively) had polymer contents of 2.40 ± 0.15 and 3.09 ± 0.22 wt%, respectively, and displayed a highly porous microstructure, characterized by compressive moduli of 39.36 and 47.30 kPa and storage moduli of 523.20 and 7012.25 Pa, respectively. Both hydrogels had a spontaneous and almost immediate swelling in aqueous media, and a high-water retention capacity (>80%), after 30 min incubation at 37 °C. Nevertheless, the Na51*4 hydrogels had higher fatigue resistance and slightly higher-water retention capacity. These hydrogels were loaded with caffeine, ibuprofen, diclofenac, or salicylic acid, reaching entrapment efficiency values ranging between 13.11 ± 0.49% for caffeine, and 15.15 ± 1.54% for salicylic acid. Similar release profiles in PBS were observed for all tested APIs, comprising an initial fast release followed by a steady slower release. In vitro permeation experiments through Strat-M membranes using Franz diffusion cells showed considerably higher permeation fluxes for caffeine (33.09 µg/cm2/h) and salicylic acid (19.53 µg/cm2/h), compared to ibuprofen sodium and diclofenac sodium (4.26 and 0.44 µg/cm2/h, respectively). Analysis in normal human dermal fibroblasts revealed that CGC hydrogels have no major effects on the viability, migration ability, and morphology of the cells. Given their demonstrated features, CGC hydrogels are very promising structures, displaying tunable physical properties, which support their future development into novel transdermal drug delivery platforms.

17.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835012

ABSTRACT

Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11ß-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.


Subject(s)
Nandrolone , Neoplasms , Photochemotherapy , Coloring Agents , Precision Medicine , Boron Compounds/pharmacology , Estradiol , Photosensitizing Agents , Cell Line, Tumor , Fluorescent Dyes/metabolism
18.
Article in English | MEDLINE | ID: mdl-35932114

ABSTRACT

Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Pathology, Molecular , Pandemics , COVID-19/diagnosis , Biosensing Techniques/methods , COVID-19 Testing
19.
Front Cell Dev Biol ; 11: 1310397, 2023.
Article in English | MEDLINE | ID: mdl-38188017

ABSTRACT

Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.

20.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558948

ABSTRACT

Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL