Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001010

ABSTRACT

Carbohydrates are the main components of lentils, accounting for more than 60% of their composition. Their content is influenced by genetic factors, with different contents depending on the variety. These compounds have not only been linked to interesting health benefits, but they also have a significant influence on the techno-functional properties of lentil-derived products. In this study, the use of near-infrared spectroscopy (NIRS) to predict the concentration of total carbohydrate, fibre, starch, total sugars, fructose, sucrose and raffinose was investigated. For this purpose, six different cultivars of macrosperm (n = 37) and microsperm (n = 43) lentils have been analysed, the samples were recorded whole and ground and the suitability of both recording methods were compared. Different spectral and mathematical pre-treatments were evaluated before developing the calibration models using the Modified Partial Least Squares regression method, with a cross-validation and an external validation. The predictive models developed show excellent coefficients of determination (RSQ > 0.9) for the total sugars and fructose, sucrose, and raffinose. The recording of ground samples allowed for obtaining better models for the calibration of starch content (R > 0.8), total sugars and sucrose (R > 0.93), and raffinose (R > 0.91). The results obtained confirm that there is sufficient information in the NIRS spectral region for the development of predictive models for the quantification of the carbohydrate content in lentils.


Subject(s)
Carbohydrates , Lens Plant , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Carbohydrates/analysis , Carbohydrates/chemistry , Lens Plant/chemistry , Starch/analysis , Starch/chemistry , Sucrose/analysis , Least-Squares Analysis , Fructose/analysis , Calibration
2.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930892

ABSTRACT

The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.


Subject(s)
Antioxidants , Lamiaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lamiaceae/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gas Chromatography-Mass Spectrometry , Origanum/chemistry , Salvia officinalis/chemistry , Cell Line, Tumor , Thymus Plant/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plants, Edible/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Thymol/pharmacology , Thymol/chemistry , Microbial Sensitivity Tests , Cymenes
3.
Food Chem ; 456: 139945, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38850604

ABSTRACT

This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.


Subject(s)
Cynara , Pasteurization , Cynara/chemistry , Hot Temperature , Antioxidants/chemistry , Functional Food/analysis , Food Handling/instrumentation , Fruit/chemistry , Cold Temperature , Food Storage , Beverages/analysis
4.
Pharmaceuticals (Basel) ; 17(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794166

ABSTRACT

Cistus ladanifer L., Acacia dealbata L., and Aloysia citrodora Paláu were subject to an optimization procedure for two extraction techniques (heat-assisted extraction (HAE) and ultrasound-assisted extraction (UAE)). The extracts were then analyzed by HPLC-DAD-ESI/MS for their phenolic profile (cistus-15 compounds, acacia-21 compounds, and lemon verbena-9 compounds). The response surface methodology was applied, considering four varying factors: ethanol percentage; extraction time; temperature/power; and S/L ratio, generating two responses (the major phenolic compound, or family of compounds, and the extraction yield). For cistus, both techniques optimized the extraction yield of punicalagins, with UAE proving to be the most efficient extraction method (3.22% ethanol, 22 min, 171 W, and 35 g/L). For acacia, HAE maximized the extraction of procyanidin (74% ethanol, 86 min, 24 °C, and 50 g/L), and UAE maximized the content of myricetin (65% ethanol, 8 min, 50 W, and 50 g/L). For lemon verbena, HAE favored the extraction of martynoside (13% ethanol, 96 min, 49 °C and 17 g/L) and forsythiaside UAE (94% ethanol, 25 min, 399 W, and 29 g/L). The optimal conditions for the extraction of compounds with high added value and potential for use in pharmaceuticals and nutraceuticals were defined.

5.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792127

ABSTRACT

Red rice has been proposed as a super-food. Accordingly, the nutritional properties (AOAC), as well as its chemical composition, including sugars (HPLC-RI), organic acids (UFLC-PDA), tocopherols (HPLD-FD), and phenolic compounds (LC-DAD-ESI/MSn), together with the main bioactive properties (antioxidant, cytotoxic, antiproliferative, and antibacterial activities), were evaluated to access its nutritional benefits and health improvement potential. The most abundant macronutrients found were carbohydrates (87.2 g/100 g dw), proceeded by proteins (9.1 g/100 g dw), fat (2.6 g/100 g dw), and ash (1.1 g/100 g dw). Sucrose and raffinose were the only detected sugars, with sucrose presenting the maximum concentration (0.74 g/100 g dw). MUFAs and PUFAs were the predominant fatty acids (40.7% and 31%, respectively). Among the two detected tocopherol isoforms, γ-tocopherol (0.67 mg/100 g dw) predominated over α-tocopherol. The phenolic compounds profile, majorly composed of flavan-3-ols, should be associated with the detected bioactivities, which may provide biological benefits to human health beyond the primary nutritional effect. Overall, the bioactive potential of red rice was comprehensively accessed.


Subject(s)
Antioxidants , Oryza , Oryza/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Humans , Tocopherols/analysis , Tocopherols/chemistry , Phenols/analysis , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis
6.
Food Funct ; 15(12): 6289-6303, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38805010

ABSTRACT

While the market is full of different dietary supplements, in most countries, legislation is clear and strict towards these products, with severe limitations on their health claims. Overall, the claims cannot go beyond the consumption of a said supplement will contribute to a healthy diet. Thus, the supplement industry has been reacting and changing their approach to consumers. One change is the considerable growth of the nutraceutical market, which provides naturally produced products, with low processing and close to no claims on the label. The marketing of this industry shifts from claiming several benefits on the label (dietary supplements) to relying on the knowledge of consumers towards the benefits of minimally processed foods filled with natural products (nutraceuticals). This review focuses on the difference between these two products, their consumption patterns, forms of presentation, explaining what makes them different, their changes through time, and their most notable ingredients, basically balancing out their pros and cons.


Subject(s)
Dietary Supplements , Humans , Food Labeling/legislation & jurisprudence
7.
Food Chem ; 450: 139293, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631207

ABSTRACT

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.


Subject(s)
Cooking , Germination , Lens Plant , Nutritive Value , Seeds , Lens Plant/chemistry , Seeds/chemistry , Seeds/growth & development , Phytic Acid/analysis , Phytic Acid/chemistry , Tannins/analysis , Tannins/chemistry , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Food Handling
8.
Foods ; 13(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338626

ABSTRACT

Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.

9.
Food Funct ; 14(19): 8775-8784, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37606616

ABSTRACT

The aim of this study was to assess the performance and stability of betacyanin compounds present in enriched extracts of red-fleshed pitaya peels (Hylocereus costaricensis) and the flowers of Amaranthus caudatus; they were evaluated as natural food colorants in tagliatelle pasta and meringue cookies. The recovered natural extracts showed promising stability, maintaining a deep pink color over a storage time of 14 days, without deeply changing the chemical composition. A number of factors were assessed, including the microbial load, texture, color, nutritional value, and contents of organic acids, fatty acids, and even free sugars of the products. Some significant interactions between the type of colorant and storage time contributed to the changes in some analyzed parameters, as can be observed from the results for organic and fatty acids in the tagliatelle pasta and meringue cookies. Another significant achievement was the reduction in the microbial load during the storage time, which strengthens the antibacterial power of these natural extracts.


Subject(s)
Amaranthus , Betacyanins , Cactaceae , Food Coloring Agents , Plant Extracts , Amaranthus/chemistry , Antioxidants/chemistry , Betacyanins/chemistry , Cactaceae/chemistry , Food Additives , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Microorganisms ; 11(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37317130

ABSTRACT

The aim of this work was to assess the natural microbiota of packed fresh-cut apples during refrigerated storage. Two different films were tested for the package, a biodegradable (PLA) film and a conventional and commercial one (OPP). Two antioxidant additives were applied, a natural olive pomace extract and the commercial ascorbic acid used by the industries. The results revealed lower bacteria counts in samples with olive pomace extract and PLA films than in those with ascorbic acid and OPP films after 5 and 12 days of storage. These findings suggest that the use of such natural extracts as additives in fruits could delay the growth of mesophilic bacteria. The characterization and identification of the bacterial isolates from fresh-cut apple samples showed that the most prevalent species were Citrobacter freundii, Staphylococcus warneri, Pseudomonas oryzihabitans, Alcalinogenes faecalis, Corynebacterium jeikeium, Micrococcus spp., Pantoea aglomerans and Bacillus spp. Furthermore, an increase in the microbial diversity during the storage time at refrigerated temperatures was observed, except for the sample treated with olive pomace extract and packaged in OPP film. The highest microbial diversity was found for samples with ascorbic acid as an additive. This could indicate a negative effect of ascorbic acid on the microbial inhibition of apple slices. The natural olive pomace extract demonstrated potential as an antimicrobial additive for fresh-cut apples.

11.
Curr Pharm Des ; 29(11): 837-851, 2023.
Article in English | MEDLINE | ID: mdl-37038293

ABSTRACT

Infectious diseases have always been a concern for human health, responsible for numerous pandemics throughout history. Even with the advancement of medicine, new infectious diseases have been discovered over the years, requiring constant effort in medical research to avoid future problems. Like the emergence of new diseases, the increase in resistance of certain bacterial strains also becomes a concern, carried out through the misuse of antibiotics, generating the adaptation of certain microorganisms. Worldwide, the resistance developed by several bacterial strains is growing exponentially, creating awareness and developing novel strategies to control their evolution a mandatory research topic. Methicillin-resistant Staphylococcus aureus (MRSA) is an example of a bacterial strain that causes serious and mortal infections. The fact is that this bacterial strain started to develop resistance against commonly used antibiotics, first to penicillin and against methicillin. Thus, the treatment against infections caused by MRSA is limited and difficult due to its capacity to develop defense mechanisms against the antibiotic's action. Given the urgency to find new alternatives, the scientific community has been developing interesting research regarding the exploitation of natural resources to discover bioactive molecules that are able to inhibit/kill MRSA. In this sense, several natural matrices, namely plants, have shown great potential against MRSA, due to the presence of phenolic compounds, molecules with high antimicrobial capacity due to their chemical structure and arrangement.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin , Penicillins , Microbial Sensitivity Tests
12.
Foods ; 12(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36900511

ABSTRACT

The industrial processing of mangosteen (Garcinia mangostana L.) generates high amounts of waste, as ~60% of the fruit is formed by an inedible pericarp. However, its pericarp has been explored as a source of xanthones; nevertheless, studies addressing the recovery of other chemical compounds from such biomass are still scarce. Hence, this study intended to elucidate the chemical composition of the mangosteen pericarp, including fat-soluble (tocopherols and fatty acids) and water-soluble (organic acids and phenolic compound non-xanthones) compounds present in the following extracts: hydroethanolic (MT80), ethanolic (MTE), and aqueous (MTW). In addition, the antioxidant, anti-inflammatory, antiproliferative and antibacterial potentials of the extracts were assessed. The mangosteen pericarp showed a composition with seven organic acids, three tocopherol isomers, four fatty acids and fifteen phenolic compounds. Regarding the extraction of phenolics, the MT80 was the most efficient (54 mg/g extract), followed by MTE (19.79 mg/g extract) and MTW (4.011 mg/g extract). All extracts showed antioxidant and antibacterial activities; however, MT80 and MTE extracts were more efficient than MTW. Only MTW did not show anti-inflammatory properties, whereas MTE and MT80 showed inhibitory activities towards tumor cell lines. Notwithstanding, MTE showed cytotoxicity towards normal cells. Our findings support the idea that the ripe mangosteen pericarp is a source of bioactive compounds, although their recovery is dependent on the extraction solvent.

13.
Food Funct ; 14(7): 3038-3050, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36896737

ABSTRACT

Ultrasound-assisted extraction (UAE) was used to recover hydroxytyrosol and tyrosol from olive pomace, a residue generated by the olive oil industry. The extraction process was optimized using response surface methodology (RSM), with processing time, ethanol concentration and ultrasonic power as the combined independent variables. The highest amounts of hydroxytyrosol (36 ± 2 mg g-1 of extract) and tyrosol (14 ± 1 mg g-1 of extract) were obtained after 28 min of sonication at 490 W using 7.3% ethanol as the solvent. Under these global conditions, an extraction yield of 30 ± 2% was achieved. The bioactivity of the extract obtained under optimized UAE was evaluated and compared with that of an extract obtained under optimal heat-assisted extraction (HAE) conditions in a previous work of the authors. Compared to HAE, UAE reduced the extraction time and the solvent consumption, and also led to higher extraction yields (HAE yield was 13.7%). Despite this, HAE extract presented higher antioxidant, antidiabetic, anti-inflammatory and antibacterial activities and no antifungal potential against C. albicans. Furthermore, HAE extract also showed higher cytotoxic effects against the breast adenocarcinoma (MCF-7) cell line. These findings provide useful information for the food and pharmaceutical industries in developing new bioactive ingredients, which may represent a sustainable alternative to synthetic preservatives and/or additives.


Subject(s)
Olea , Olea/chemistry , Gamma Rays , Ethanol/chemistry , Solvents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
14.
Food Res Int ; 165: 112574, 2023 03.
Article in English | MEDLINE | ID: mdl-36869553

ABSTRACT

Chemical constituents and bioactive properties of rambutan (Nephelium lappaceum L.) peel were characterized and heat-/ultrasound-assisted extractions (HAE/UAE) of anthocyanins were optimized by response surface methodology. Five organic acids, the α-, γ-, and δ-tocopherol isoforms, and twenty-five fatty acids (36.8 % oleic acid) were identified, as well as a phenolic profile composed of ellagitannin derivatives, geraniin isomers, ellagic acid, and delphinidin-O derivatives. The extract showed antioxidant activity via lipid peroxidation (IC50 = 2.79 ± 0.03 µg/mL) and oxidative hemolysis (IC50 = 72 ± 2 µg/mL) inhibition, and displayed antibacterial and antifungal properties (MIC ≤ 1 mg/mL). On the other hand, no cytotoxicity was observed in tumor and non-tumor cell lines up to 400 µg/mL. The recovery of anthocyanins was more effective using HAE than UAE, allowing greater yields (16.2 mg/g extract) in just 3 min and using lower ethanol proportions. Overall, rambutan peel could be upcycled into bioactive ingredients and natural colorants for industrial applications.


Subject(s)
Anthocyanins , Anti-Bacterial Agents , Antifungal Agents , Ellagic Acid , Ethanol
15.
Food Funct ; 14(3): 1761-1772, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36723015

ABSTRACT

A variety of the classic green tea plant, Camellia sinensis, was developed and is exclusive to Kenya. Due to high content of anthocyanin polyphenols in its leaves, the beverage obtained from this variety is purple in color and is the origin of the name purple tea. This work had two main purposes. The first one was to identify and quantify the major anthocyanin polyphenols in a hot water aqueous extract of the purple tea leaves. The second one was to test the hypothesis if this extract is capable of inhibiting triglyceride absorption considering that anthocyanin polyphenolics have been frequently associated to antilipidemic effects. Parallel experiments were always done with a similar green tea extract for comparison purposes. The antioxidant, anti-inflammatory, and cytotoxic activities of both tea varieties are similar. The purple tea extract, however, was strongly inhibitory toward the pancreatic lipase (minimal IC50 = 67.4 µg mL-1), whereas the green tea preparation was a weak inhibitor. Triglyceride digestion in mice was inhibited by the purple tea extract starting at 100 mg kg-1 dose and with a well-defined dose dependence. Green tea had no effect on triglyceride digestion at doses up to 500 mg kg-1. The latter effect is probably caused by several components in the purple tea extract including non-anthocyanin and anthocyanin polyphenols, the first ones acting solely via the inhibition of the pancreatic lipase and the latter by inhibiting both the lipase and the transport of free fatty acids from the intestinal lumen into the circulating blood. The results suggest that the regular consumption of Kenyan purple tea can be useful in the control of obesity.


Subject(s)
Camellia sinensis , Lipase , Mice , Animals , Kenya , Polyphenols/pharmacology , Polyphenols/analysis , Tea/chemistry , Camellia sinensis/chemistry , Anthocyanins/pharmacology , Anthocyanins/chemistry , Antioxidants/analysis , Triglycerides , Digestion
16.
Food Chem ; 411: 135491, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36724608

ABSTRACT

Lentils (Lens culinaris spp.) are a type of edible pulse consumed and produced worldwide; they are known for their valuable nutritional assets. The nutritional and chemical profiles of 34 Armuña lentil samples were assessed together with their antioxidant capacity. In addition, the influence of both the climatic conditions during the growing season and the soil type in which they grow (Luvisol and Cambisol) on nutritional and chemical profiles was also evaluated. Our results showed large amounts of valuable nutrients, such as carbohydrates, of which approximately 47.06 % and 29.11 % consist of fibers and starch respectively and significant amounts of proteins (20.47 to 25.56 g/100 g fw) and ashes. Sucrose stood out as the main free sugar in this variety, and oxalic and γ-tocopherol as the main organic acid and tocopherol isoform respectively. Fatty acid assessment showed the prevalence of PUFAs (45.3 to 63.7 %). A high antioxidant capacity (TBARS and OxHLIA) was also observed. Our results indicate that the growing season has a significant impact on the major nutrients in lentils such as the concentration of fat, ashes, fibers, and fructose and to a lesser extent proteins and sucrose. In addition, the two different soil types in this study do not seem to affect any of the parameters analyzed.


Subject(s)
Antioxidants , Lens Plant , Antioxidants/analysis , Lens Plant/metabolism , Soil , Seasons , Carbohydrates , Sucrose/metabolism
17.
Life (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36836744

ABSTRACT

The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.

18.
Microorganisms ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36838208

ABSTRACT

Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and ß-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.

20.
Plants (Basel) ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432904

ABSTRACT

The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.

SELECTION OF CITATIONS
SEARCH DETAIL