Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038483

ABSTRACT

The function of a well-differentiated nasal epithelium is largely affected by airflow-induced wall shear stress, yet few in vitro models recapitulate this dynamic condition. Models which do expose cells to airflow exclusively initiate flow after the differentiation process has occurred. In vivo, basal cells are constantly replenishing the epithelium under airflow conditions, indicating that airflow may affect the development and function of the differentiated epithelium. To address this gap in the field, we developed a physiologically relevant microphysiological model of the human nasal epithelium and investigated the effects of exposing cells to airflow during epithelial maturation at the air-liquid interface. The nasal airway-on-chip platform was engineered to mimic bi-directional physiological airflow during normal breathing. Primary human nasal epithelial cells were seeded on chips and subjected to either: 1) no flow, 2) single flow (0.5 dyne/cm2flow on Day 21 of ALI only), or 3) pre-conditioning flow (0.05 dyne/cm2on Days 14-20 and 0.5 dyne/cm2flow on Day 21) treatments. Cells exposed to pre-conditioning showed decreased morphological changes and mucus secretions, as well as a decreased inflammation, compared to unconditioned cells. Our results indicate that flow exposure only post-differentiation may impose acute stress on cells, while pre-conditioning may potentiate a properly functioning epithelium in vitro. .

2.
Acta Biomater ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084496

ABSTRACT

BACKGROUND: Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50% elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms. METHODS: In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed. RESULTS: Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment. CONCLUSIONS: In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process. STATEMENT OF SIGNIFICANCE: Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50%, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.

3.
Neurotrauma Rep ; 3(1): 224-239, 2022.
Article in English | MEDLINE | ID: mdl-35919509

ABSTRACT

The pathological effects of repeated traumatic brain injuries (TBIs) are largely unknown. To gain a detailed understanding of the cortical tissue acute biological response after one or two TBIs, we utilized RNA-sequencing and protein mass spectrometry techniques. Using our previously validated C57Bl/6 weight-drop model, we administered one or two TBIs of a mild or moderate severity. Double injury conditions were spaced 7 days apart, and cortical tissue was isolated 24 h after final injury. Analysis was carried out through functional gene annotation, utilizing Gene Ontology, for both the proteome and transcriptome. Major themes across the four different conditions include: neurogenesis; inflammation and immune response; cell death; angiogenesis; protein modification; and cell communication. Proteins associated with neurogenesis were found to be upregulated after single injuries. Transcripts associated with angiogenesis were upregulated in the moderate single, mild double, and moderate double TBI conditions. Genes associated with inflammation and immune response were upregulated in every condition, with the moderate single condition reporting the most functional groups. Proteins or genes involved in cell death, or apoptosis, were upregulated in every condition. Our results emphasize the significant differences found in proteomic and transcriptomic changes in single versus double injuries. Further, cortical omics analysis offers important insights for future studies aiming to deepen current knowledge on the development of secondary injuries and neurobehavioral impairments after brain trauma.

4.
Bioorg Med Chem ; 27(18): 4143-4150, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31378595

ABSTRACT

Isoniazid-naphthoquinone hybrids were synthesized and evaluated against a susceptible (H37Rv) strain and two isoniazid-resistant strains (INHR1 and INHR2) of Mycobacterium tuberculosis. The antimycobacterial activity of the derivatives was determined based on the resazurin microtiter assay and their cytotoxicity in adhered mouse monocyte macrophage J774.A1 cells (ATCC TIB-67). Of the twenty-two compounds evaluated against the three strains of M. tuberculosis, twenty-one presented some activity against the H37Rv and INHR1 (katG S315T) or INHR2 (inhA C(-5)T) strains. Compounds 1a, 2a, and 8a were effective against the INHR1 strain, and compounds 1a, 1b, 2a, 3a, 5a, 5b and 8a were effective against the INHR2 strain, with MICs in the range of 3.12-6.25 µg/mL. Compounds 1b and 5b were the most active against H37Rv, with MIC of 0.78 µg/mL. Based on the selectivity index, 1b and 5b can be considered safe as a drug candidate compounds. These results demonstrate that quinoidal compounds can be used as promising scaffolds for the development of new anti-TB drugs and hybrids with activity against M. tuberculosis-susceptible and INH-resistant strains.


Subject(s)
Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Mycobacterium tuberculosis/drug effects , Naphthoquinones/therapeutic use , Animals , Humans , Isoniazid/pharmacology , Mice , Naphthoquinones/pharmacology
5.
Front Microbiol ; 9: 673, 2018.
Article in English | MEDLINE | ID: mdl-29686657

ABSTRACT

Despite being a curable disease, tuberculosis (TB) remains a public health problem worldwide mainly due to lengthy treatment, as well as its toxic effects, TB/HIV co-infection and the emergence of resistant Mycobacterium tuberculosis strains. These barriers reinforcing the need for development of new antimicrobial agents, that ideally should reduce the time of treatment and be active against susceptible and resistant strains. Quinones are compounds found in natural sources and among them, the naphthoquinones show antifungal, antiparasitic, and antimycobacterial activity. Thus, we evaluated the potential antimycobacterial activity of six 1,4-naphthoquinones derivatives. We determined the minimum inhibitory concentration (MIC) of the compounds against three M. tuberculosis strains: a pan-susceptible H37Rv (ATCC 27294); one mono-resistant to isoniazid (ATCC 35822); and one mono-resistant to rifampicin (ATCC 35838); the cytotoxicity in the J774A.1 (ATCC TIB-67) macrophage lineage; performed in silico analysis about absorption, distribution, metabolism, and excretion (ADME) and docking sites. All evaluated naphthoquinones were active against the three strains with MIC between 206.6 and 12.5 µM, and the compounds with lower MIC values have also showed low cytotoxicity. Moreover, two naphthoquinones derivatives 5 and 6 probably do not exhibit cross resistance with isoniazid and rifampicin, respectively, and regarding ADME analysis, no compound violated the Lipinski's rule-of-five. Considering the set of findings in this study, we conclude that these naphthoquinones could be promising scaffolds to develop new therapeutic strategies to TB.

6.
Nutrition ; 42: 37-45, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28870477

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the browning and origin of fatty acids (FAs) in the maintenance of triacylglycerol (TG) storage and/or as fuel for thermogenesis in perirenal adipose tissue (periWAT) and inguinal adipose tissue (ingWAT) of rats fed a low-protein, high-carbohydrate (LPHC) diet. METHODS: LPHC (6% protein, 74% carbohydrate) or control (C; 17% protein, 63% carbohydrate) diets were administered to rats for 15 d. The tissues were stained with hematoxylin and eosin for histologic analysis. The content of uncoupling protein 1 (UCP1) was determined by immunofluorescence. Levels of T-box transcription factor (TBX1), PR domain containing 16 (PRDM16), adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase, lipoprotein lipase (LPL), glycerokinase, phosphoenolpyruvate carboxykinase (PEPCK), glucose transporter 4, ß3-adrenergic receptor (AR), ß1-AR, protein kinase A (PKA), adenosine-monophosphate-activated protein kinase (AMPK), and phospho-AMPK were determined by immunoblotting. Serum fibroblast growth factor 21 (FGF21) was measured using a commercial kit (Student's t tests, P < 0.05). RESULTS: The LPHC diet increased FGF21 levels by 150-fold. The presence of multilocular adipocytes, combined with the increased contents of UCP1, TBX1, and PRDM16 in periWAT of LPHC-fed rats, suggested the occurrence of browning. The contents of ß1-AR and LPL were increased in the periWAT. The ingWAT showed higher ATGL and PEPCK levels, phospho-AMPK/AMPK ratio, and reduced ß3-AR and PKA levels. CONCLUSION: These findings suggest that browning occurred only in the periWAT and that higher utilization of FAs from blood lipoproteins acted as fuel for thermogenesis. Increased glycerol 3-phosphate generation by glyceroneogenesis increased FAs reesterification from lipolysis, explaining the increased TG storage in the ingWAT.


Subject(s)
Adipose Tissue, Brown/metabolism , Diet, Protein-Restricted/methods , Dietary Carbohydrates/administration & dosage , Kidney/metabolism , Adipose Tissue, Brown/drug effects , Animals , Diet/methods , Fibroblast Growth Factors/blood , Fluorescent Antibody Technique , Inguinal Canal , Kidney/drug effects , Male , Models, Animal , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL