ABSTRACT
Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.
Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Genes, Bacterial , Brazil , Bacteria , Drug Resistance, Microbial/genetics , Microbiota/genetics , Forests , Soil Microbiology , Manure/microbiologyABSTRACT
Livestock waste is widely used in agriculture. Although they provide benefits to the soil, and consequently to plants, they have the potential to contaminate the environment, as they contain pathogenic microorganisms and determinants of antimicrobial resistance, if not properly managed. Therefore, this study aims to evaluate the effect of composting horse bedding and poultry litter in organic and conventional production systems on the occurrence of bacteria in the Enterobacteriales order and to identify their antimicrobial resistance profiles. Bacterial strains were isolated from Salmonella-Shigella and eosin methylene blue solid media from animal waste during the composting process that was conducted for 125 days. After isolation, the strains were identified by the MALDI-TOF technique; the disk diffusion test was then performed for phenotypic detection of antimicrobial resistance. A total of 158 bacterial strains were isolated during composting of three wastes. The Enterobacteriaceae family was the most abundant, whereas Proteus mirabilis and Escherichia coli were the species with the highest percentage in the wastes, which also exhibited a multi-resistance profile. Poultry litter showed a greater abundance of resistant bacteria than horse bedding did. Similarly, a greater number of resistant bacteria was detected in conventional poultry litter than in organic poultry litter. The results obtained reinforce that animal wastes are reservoirs of pathogenic bacteria that are resistant to antimicrobials and highlight the importance of developing management strategies that aim to reduce and/or eliminate these contaminants to guarantee their safe use in agriculture.