Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485816

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Neoplasms , Humans , Cell Survival , Glycolysis/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , NAD
2.
Dis Model Mech ; 16(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-38037877

By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.


Membrane Transport Proteins , Neoplasms , Humans , Membrane Transport Proteins/metabolism , Solute Carrier Proteins/chemistry , Solute Carrier Proteins/metabolism , Biological Transport/physiology , Neoplasms/drug therapy , Cell Physiological Phenomena , Tumor Microenvironment
3.
Cell Rep ; 42(4): 112396, 2023 04 25.
Article En | MEDLINE | ID: mdl-37061917

Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.


AMP-Activated Protein Kinases , Prostatic Neoplasms , Male , Humans , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Lipogenesis , Lipid Metabolism , Prostatic Neoplasms/pathology
5.
Commun Biol ; 5(1): 877, 2022 08 26.
Article En | MEDLINE | ID: mdl-36028752

α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.


Amino Acids, Dicarboxylic , Ketoglutaric Acids , Biology , Mechanistic Target of Rapamycin Complex 1
6.
Nat Commun ; 11(1): 4653, 2020 09 16.
Article En | MEDLINE | ID: mdl-32938923

Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis. We identify Indole-3-propionic acid as an optimal amino acid derivative to rationally target the proline-dependency of tumour growth. Insights from this whole-animal Drosophila model provide a powerful approach towards the identification and therapeutic exploitation of the amino acid vulnerabilities of tumourigenesis in the context of a perturbed systemic metabolic network.


Dietary Sugars/adverse effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Neoplasms, Experimental/physiopathology , Proline/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Animals , Animals, Genetically Modified , Carcinogenesis , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Hemolymph/drug effects , Hemolymph/metabolism , Larva , Muscle Weakness/chemically induced , Muscle Weakness/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology , Neoplasms, Experimental/etiology , Nuclear Proteins/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Trans-Activators/genetics , YAP-Signaling Proteins , ras Proteins/genetics
8.
Elife ; 82019 07 02.
Article En | MEDLINE | ID: mdl-31264961

Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.


Allosteric Regulation , Carrier Proteins/metabolism , Gene Expression Regulation, Enzymologic , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , DNA Mutational Analysis , Enzyme Activators/metabolism , Enzyme Inhibitors/metabolism , Fructosediphosphates/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Dynamics Simulation , Phenylalanine/metabolism , Protein Multimerization , Spectrum Analysis , Thyroid Hormones/chemistry , Thyroid Hormones/genetics , Thyroid Hormone-Binding Proteins
9.
Nat Chem Biol ; 14(11): 1032-1042, 2018 11.
Article En | MEDLINE | ID: mdl-30297875

α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.


Amino Acids, Dicarboxylic/chemistry , Ketoglutaric Acids/chemistry , Monocarboxylic Acid Transporters/metabolism , Adenosine Triphosphate/chemistry , Animals , Biochemical Phenomena , Cattle , Cell Line, Tumor , Citric Acid Cycle , Gene Expression Profiling , Glutamine/metabolism , Humans , Hydrolysis , Inhibitory Concentration 50 , MCF-7 Cells , Metabolomics , Mice , Mitochondria/metabolism , Oxygen/chemistry , Puromycin/chemistry , Signal Transduction , Tricarboxylic Acids/chemistry
10.
Adv Exp Med Biol ; 899: 59-88, 2016.
Article En | MEDLINE | ID: mdl-27325262

Cancer cells exhibit characteristic patterns of metabolic behaviour that can be exploited for therapeutic purposes. Conditions found within the tumour microenvironment, such as hypoxia and selective nutrient availability, are known to influence the metabolism of cancer and stromal cells. Understanding cancer metabolism requires the use of analytical methods that allow detection and quantification of many metabolites simultaneously. Gas chromatography-mass spectrometry (GC-MS) is a versatile method to quantify metabolite abundance and, in combination with stable isotope labelled compounds, can yield important insights into the activity of metabolic pathways in cancer cells. This chapter provides an overview of the use of GC-MS for metabolic analysis of adherent cancer cells with an emphasis on the technical background that should be taken into consideration when designing and executing GC-MS-based metabolomics experiments.


Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Animals , Cells, Cultured , Humans , Metabolome , Quality Control , Reference Standards , Statistics as Topic
11.
EMBO J ; 33(19): 2188-200, 2014 Oct 01.
Article En | MEDLINE | ID: mdl-25180230

Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1-hexadecyl-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol), in which the sn-1 position contains an ether-linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.


Dictyostelium/physiology , Phosphatidylinositols/metabolism , Phospholipid Ethers/metabolism , Signal Transduction/physiology , Animals , Spectrometry, Mass, Electrospray Ionization
12.
Curr Biol ; 24(4): 415-21, 2014 Feb 17.
Article En | MEDLINE | ID: mdl-24485835

In neutrophils and Dictyostelium, chemoattractant gradients generate directed cell migration by eliciting signaling events that bias intrinsic motility and favor the production and retention of upgradient pseudopods. Phosphoinositides are actively regulated during chemotaxis in these cells, most iconically in the production of PI(3,4,5)P3 gradients within the plasma membrane. Although it is now known that PI(3,4,5)P3 signaling is nonessential for gradient sensing, the role of the related phosphoinositide PI(4,5)P2 is little understood, despite its clear importance in many cell biological processes. We describe here a PIP5 kinase, PikI, which produces PI(4,5)P2 and is essential for efficient chemotaxis of Dictyostelium cells. Without PikI, PI(4,5)P2 levels are reduced by 90%, and while pikI(-) cells move at normal speeds, they are highly disorientated in cAMP gradients. Following chemotactic stimulation, Ras is efficiently activated in pikI(-) cells, yet Ras-dependent responses (including activation of PKB) are severely impaired. PikI is phosphorylated by PKB, and in vitro studies of a phosphomimic mutant suggest that this phosphorylation increases PikI activity. We propose that adequate PI(4,5)P2 levels are required to couple activated Ras to its downstream effectors and that these levels are regulated by PikI, making it a crucial player in gradient sensing.


Chemotaxis , Dictyostelium/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Cyclic AMP/metabolism , Dictyostelium/cytology , Enzyme Activation , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proto-Oncogene Proteins c-akt/metabolism
13.
Nat Cell Biol ; 15(8): 891-3, 2013 Aug.
Article En | MEDLINE | ID: mdl-23907193

The transcription factor p73, a close relative of p53, has complex yet poorly understood roles in tumorigenesis. TAp73, a p73 variant, has now been shown to promote cancer cell proliferation by regulating glucose metabolism to control cellular biosynthetic pathways and antioxidant capacity.


Antioxidants , Nuclear Proteins/metabolism , Pentose Phosphate Pathway , Animals , Female , Humans
...