Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cardiovasc Magn Reson ; 19(1): 23, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28187739

ABSTRACT

BACKGROUND: With multifaceted imaging capabilities, cardiovascular magnetic resonance (CMR) is playing a progressively increasing role in the management of various cardiac conditions. A global registry that harmonizes data from international centers, with participation policies that aim to be open and inclusive of all CMR programs, can support future evidence-based growth in CMR. METHODS: The Global CMR Registry (GCMR) was established in 2013 under the auspices of the Society for Cardiovascular Magnetic Resonance (SCMR). The GCMR team has developed a web-based data infrastructure, data use policy and participation agreement, data-harmonizing methods, and site-training tools based on results from an international survey of CMR programs. RESULTS: At present, 17 CMR programs have established a legal agreement to participate in GCMR, amongst them 10 have contributed CMR data, totaling 62,456 studies. There is currently a predominance of CMR centers with more than 10 years of experience (65%), and the majority are located in the United States (63%). The most common clinical indications for CMR have included assessment of cardiomyopathy (21%), myocardial viability (16%), stress CMR perfusion for chest pain syndromes (16%), and evaluation of etiology of arrhythmias or planning of electrophysiological studies (15%) with assessment of cardiomyopathy representing the most rapidly growing indication in the past decade. Most CMR studies involved the use of gadolinium-based contrast media (95%). CONCLUSIONS: We present the goals, mission and vision, infrastructure, preliminary results, and challenges of the GCMR. TRIAL REGISTRATION: Identification number on ClinicalTrials.gov: NCT02806193 . Registered 17 June 2016.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Magnetic Resonance Imaging , Registries , Research Design , Societies, Scientific , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Contrast Media/administration & dosage , Cooperative Behavior , Humans , International Cooperation , Internet/organization & administration , Organizational Objectives , Predictive Value of Tests , Prognosis
2.
Nat Commun ; 3: 1054, 2012.
Article in English | MEDLINE | ID: mdl-22968700

ABSTRACT

Real-time imaging of moving organs and tissues at microscopic resolutions represents a major challenge in studying the complex biology of live animals. Here we present a technique based on a novel stabilizer setup combined with a gating acquisition algorithm for the imaging of a beating murine heart at the single-cell level. The method allows serial in vivo fluorescence imaging of the beating heart in live mice in both confocal and nonlinear modes over the course of several hours. We demonstrate the utility of this technique for in vivo optical sectioning and dual-channel time-lapse fluorescence imaging of cardiac ischaemia. The generic method could be adapted to other moving organs and thus broadly facilitate in vivo microscopic investigations.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Fluorescence, Multiphoton/methods , Myocardial Contraction/physiology , Algorithms , Animals , Heart , Mice
3.
J Vis Exp ; (28)2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19578329

ABSTRACT

Optical projection tomography is a three-dimensional imaging technique that has been recently introduced as an imaging tool primarily in developmental biology and gene expression studies. The technique renders biological sample optically transparent by first dehydrating them and then placing in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution). The technique renders biological samples optically transparent by first dehydrating them in graded ethanol solutions then placing them in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution) to clear. After the clearing process the scattering contribution in the sample can be greatly reduced and made almost negligible while the absorption contribution cannot be eliminated completely. When trying to reconstruct the fluorescence distribution within the sample under investigation, this contribution affects the reconstructions and leads, inevitably, to image artifacts and quantification errors.. While absorption could be reduced further with a permanence of weeks or months in the clearing media, this will lead to progressive loss of fluorescence and to an unrealistically long sample processing time. This is true when reconstructing both exogenous contrast agents (molecular contrast agents) as well as endogenous contrast (e.g. reconstructions of genetically expressed fluorescent proteins).


Subject(s)
Heart/anatomy & histology , Tomography, Optical/methods , Animals , Benzoates/chemistry , Benzyl Alcohol/chemistry , Contrast Media/chemistry , Imaging, Three-Dimensional/methods , Mice
4.
Opt Express ; 17(25): 22320-32, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-20052155

ABSTRACT

We implement the use of a graphics processing unit (GPU) in order to achieve real time data processing for high-throughput transmission optical projection tomography imaging. By implementing the GPU we have obtained a 300 fold performance enhancement in comparison to a CPU workstation implementation. This enables to obtain on-the-fly reconstructions enabling for high throughput imaging.


Subject(s)
Computer Graphics/instrumentation , Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Tomography, Optical/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL