Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131268, 2024 May.
Article in English | MEDLINE | ID: mdl-38580011

ABSTRACT

Human carbonic anhydrases (hCAs) play a central role in various physiological processes in the human body. HCAs catalyze the reversible hydration of CO2 into HCO3-, and hence maintains the fluid and pH balance. Overexpression of CA II is associated with diseases, such as glaucoma, and epilepsy. Therefore, CAs are important clinical targets and inhibition of different isoforms, especially hCA II is used in treatment of glaucoma, altitude sickness, and epilepsy. Therapeutically used CA inhibitors (CAI) are sulfonamide-based, such as acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. However, they exhibit several undesirable effects such as numbness, tingling of extremities, malaise, metallic taste, fatigue, renal calculi, and metabolic acidosis. Therefore, there is an urgent need to identify safe and effective inhibitors of the hCAs. In this study, different phenyl boronic acids 1-5 were evaluated against bovine (bCA II) and hCA II. Among all, compound 1 (4-acetylphenyl boronic acid) was found to be active against bCAII and hCA II with IC50 values of 246 ± 0.48 and 281.40 ± 2.8 µM, respectively, while the remaining compounds were found in-active. Compound 1 was identified as competitive inhibitor of hCA II enzyme (Ki = 283.7 ± 0.002 µM). Additionally, compound 1 was found to be non-toxic against BJ Human fibroblast cell line. The X-ray crystal structure for hCA II in-complex with compound 1 was evaluated to a resolution of 2.6 Å. In fact, this the first structural analysis of a phenyl boron-based inhibitor bound to hCA II, allowing an additional structure-activity analysis of the compounds. Compound 1 was found to be directly bound in the active site of hCA II by interacting with His94, His119, and Thr199 residues. In addition, a bond of 3.11 Å between the zinc ion and coordinated boron atom of the boronic acid moiety of compound 1 was also observed, contributing to binding affinity of compound 1 for hCA II. PDB ID: 8IGF.


Subject(s)
Boronic Acids , Carbonic Anhydrase II , Carbonic Anhydrase Inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Boronic Acids/chemistry , Boronic Acids/pharmacology , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Crystallography, X-Ray , Crystallization , Animals , Cattle , Models, Molecular , Structure-Activity Relationship
2.
Article in English | MEDLINE | ID: mdl-38422227

ABSTRACT

SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.

3.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686452

ABSTRACT

The ß-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Scattering, Small Angle , X-Ray Diffraction , X-Rays
4.
ACS Omega ; 8(32): 29101-29112, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599915

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are surface-active redox enzymes that catalyze the degradation of recalcitrant polysaccharides, making them important tools for energy production from renewable sources. In addition, LPMOs are important virulence factors for fungi, bacteria, and viruses. However, many knowledge gaps still exist regarding their catalytic mechanism and interaction with their insoluble, crystalline substrates. Moreover, conventional structural biology techniques, such as X-ray crystallography, usually do not reveal the protonation state of catalytically important residues. In contrast, neutron crystallography is highly suited to obtain this information, albeit with significant sample volume requirements and challenges associated with hydrogen's large incoherent scattering signal. We set out to demonstrate the feasibility of neutron-based techniques for LPMOs using N-acetylglucosamine-binding protein A (GbpA) from Vibrio cholerae as a target. GbpA is a multifunctional protein that is secreted by the bacteria to colonize and degrade chitin. We developed an efficient deuteration protocol, which yields >10 mg of pure 97% deuterated protein per liter expression media, which was scaled up further at international facilities. The deuterated protein retains its catalytic activity and structure, as demonstrated by small-angle X-ray and neutron scattering studies of full-length GbpA and X-ray crystal structures of its LPMO domain (to 1.1 Å resolution), setting the stage for neutron scattering experiments with its substrate chitin.

5.
Commun Biol ; 3(1): 417, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737395

ABSTRACT

Visualizing ligand binding interactions is important for structure-based drug design and fragment-based screening methods. Rapid and uniform soaking with potentially reduced lattice defects make small macromolecular crystals attractive targets for studying drug binding using microcrystal electron diffraction (MicroED). However, so far no drug binding interactions could unambiguously be resolved by electron diffraction alone. Here, we use MicroED to study the binding of a sulfonamide inhibitor to human carbonic anhydrase isoform II (HCA II). We show that MicroED data can efficiently be collected on a conventional transmission electron microscope from thin hydrated microcrystals soaked with the clinical drug acetazolamide (AZM). The data are of high enough quality to unequivocally fit and resolve the bound inhibitor. We anticipate MicroED can play an important role in facilitating in-house fragment screening for drug discovery, complementing existing methods in structural biology such as X-ray and neutron diffraction.


Subject(s)
Acetazolamide/chemistry , Carbonic Anhydrase II/chemistry , Drug Evaluation, Preclinical , Microscopy, Electron, Transmission , Acetazolamide/therapeutic use , Carbonic Anhydrase II/antagonists & inhibitors , Crystallography, X-Ray , Electrons , Humans , Ligands , Pharmaceutical Preparations/chemistry
6.
Int J Mol Sci ; 21(15)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722392

ABSTRACT

Upregulation of carbonic anhydrase IX (CA IX) is associated with several aggressive forms of cancer and promotes metastasis. CA IX is normally constitutively expressed at low levels in selective tissues associated with the gastrointestinal tract, but is significantly upregulated upon hypoxia in cancer. CA IX is a multi-domain protein, consisting of a cytoplasmic region, a single-spanning transmembrane helix, an extracellular CA catalytic domain, and a proteoglycan-like (PG) domain. Considering the important role of CA IX in cancer progression and the presence of the unique PG domain, little information about the PG domain is known. Here, we report biophysical characterization studies to further our knowledge of CA IX. We report the 1.5 Å resolution crystal structure of the wild-type catalytic domain of CA IX as well as small angle X-ray scattering and mass spectrometry of the entire extracellular region. We used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize the spontaneous degradation of the CA IX PG domain and confirm that it is only the CA IX catalytic domain that forms crystals. Small angle X-ray scattering analysis of the intact protein indicates that the PG domain is not randomly distributed and adopts a compact distribution of shapes in solution. The observed dynamics of the extracellular domain of CA IX could have physiological relevance, including observed cleavage and shedding of the PG domain.


Subject(s)
Antigens, Neoplasm/chemistry , Carbonic Anhydrase IX/chemistry , Neoplasm Proteins/chemistry , Neoplasms/enzymology , Crystallography, X-Ray , Humans , Protein Domains
7.
J Struct Biol ; 205(2): 147-154, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30639924

ABSTRACT

Up-regulation of carbonic anhydrase IX (CA IX) expression is an indicator of metastasis and associated with poor cancer patient prognosis. CA IX has emerged as a cancer drug target but development of isoform-specific inhibitors is challenging due to other highly conserved CA isoforms. In this study, a CA IXmimic construct was used (CA II with seven point mutations introduced, to mimic CA IX active site) while maintaining CA II solubility that make it amenable to crystallography. The structures of CA IXmimic unbound and in complex with saccharin (SAC) and a saccharin-glucose conjugate (SGC) were determined using joint X-ray and neutron protein crystallography. Previously, SAC and SGC have been shown to display CA isoform inhibitor selectivity in assays and X-ray crystal structures failed to reveal the basis of this selectivity. Joint X-ray and neutron crystallographic studies have shown active site residues, solvent, and H-bonding re-organization upon SAC and SGC binding. These observations highlighted the importance of residues 67 (Asn in CA II, Gln in CA IX) and 130 (Asp in CA II, Arg in CA IX) in selective CA inhibitor targeting.


Subject(s)
Carbonic Anhydrases/metabolism , Crystallography, X-Ray/methods , Saccharin/pharmacology , Catalytic Domain , Neutrons , Protein Binding
8.
Structure ; 26(3): 383-390.e3, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29429876

ABSTRACT

Human carbonic anhydrases (hCAs) play various roles in cells, and have been drug targets for decades. Sequence similarities of hCA isoforms necessitate designing specific inhibitors, which requires detailed structural information for hCA-inhibitor complexes. We present room temperature neutron structures of hCA II in complex with three clinical drugs that provide in-depth analysis of drug binding, including protonation states of the inhibitors, hydration water structure, and direct visualization of hydrogen-bonding networks in the enzyme's active site. All sulfonamide inhibitors studied bind to the Zn metal center in the deprotonated, anionic, form. Other chemical groups of the drugs can remain neutral or be protonated when bound to hCA II. MD simulations have shown that flexible functional groups of the inhibitors may alter their conformations at room temperature and occupy different sub-sites. This study offers insights into the design of specific drugs to target cancer-related hCA isoform IX.


Subject(s)
Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protons , Structure-Activity Relationship
9.
Acta Crystallogr D Struct Biol ; 72(Pt 11): 1194-1202, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27841752

ABSTRACT

Galectin-3 is an important protein in molecular signalling events involving carbohydrate recognition, and an understanding of the hydrogen-bonding patterns in the carbohydrate-binding site of its C-terminal domain (galectin-3C) is important for the development of new potent inhibitors. The authors are studying these patterns using neutron crystallography. Here, the production of perdeuterated human galectin-3C and successive improvement in crystal size by the development of a crystal-growth protocol involving feeding of the crystallization drops are described. The larger crystals resulted in improved data quality and reduced data-collection times. Furthermore, protocols for complete removal of the lactose that is necessary for the production of large crystals of apo galectin-3C suitable for neutron diffraction are described. Five data sets have been collected at three different neutron sources from galectin-3C crystals of various volumes. It was possible to merge two of these to generate an almost complete neutron data set for the galectin-3C-lactose complex. These data sets provide insights into the crystal volumes and data-collection times necessary for the same system at sources with different technologies and data-collection strategies, and these insights are applicable to other systems.


Subject(s)
Galectin 3/chemistry , Neutron Diffraction/methods , Blood Proteins , Crystallization/methods , Deuterium/chemistry , Galectin 3/metabolism , Galectins , Humans , Lactose/chemistry , Lactose/metabolism , Models, Molecular , Protein Conformation
10.
Acta Crystallogr D Struct Biol ; 72(Pt 7): 892-903, 2016 07.
Article in English | MEDLINE | ID: mdl-27377386

ABSTRACT

Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and ßHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and ßHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:ß1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to ßAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:ß2 and α2:ß1) to the cores of the individual monomers and to the dimer interfaces (α1:ß1 and α2:ß2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.


Subject(s)
Hemoglobins/chemistry , Methemoglobin/analogs & derivatives , Animals , Deuterium Exchange Measurement , Histidine/analysis , Horses , Humans , Methemoglobin/chemistry , Models, Molecular , Neutron Diffraction , Protein Conformation , Protein Multimerization , Protons
11.
IUCrJ ; 3(Pt 5): 319-325, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-28461893

ABSTRACT

Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO2 and HCO3-, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Šwith an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki) for both of the drugs against hCA II is similar (∼10 nM). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II-MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.

12.
Biochemistry ; 54(42): 6435-8, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26451738

ABSTRACT

Carbohydrate-binding modules (CBMs) are key components of many carbohydrate-modifying enzymes. CBMs affect the activity of these enzymes by modulating bonding and catalysis. To further characterize and study CBM-ligand binding interactions, neutron crystallographic studies of an engineered family 4-type CBM in complex with a branched xyloglucan ligand were conducted. The first neutron crystal structure of a CBM-ligand complex reported here shows numerous atomic details of hydrogen bonding and water-mediated interactions and reveals the charged state of key binding cleft amino acid side chains.


Subject(s)
Carbohydrate Metabolism , Carbohydrates/chemistry , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enzymes/chemistry , Enzymes/metabolism , Glucans/chemistry , Glucans/metabolism , Hydrogen Bonding , Ligands , Models, Molecular , Neutrons , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Rhodothermus/enzymology , Water , Xylans/chemistry , Xylans/metabolism
13.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1072-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26249702

ABSTRACT

Carbohydrate-binding modules (CBMs) are discrete parts of carbohydrate-hydrolyzing enzymes that bind specific types of carbohydrates. Ultra high-resolution X-ray crystallographic studies of CBMs have helped to decipher the basis for specificity in carbohydrate-protein interactions. However, additional studies are needed to better understand which structural determinants confer which carbohydrate-binding properties. To address these issues, neutron crystallographic studies were initiated on one experimentally engineered CBM derived from a xylanase, X-2 L110F, a protein that is able to bind several different plant carbohydrates such as xylan, ß-glucan and xyloglucan. This protein evolved from a CBM present in xylanase Xyn10A of Rhodothermus marinus. The protein was complexed with a branched xyloglucan heptasaccharide. Large single crystals of hydrogenous protein (∼1.6 mm(3)) were grown at room temperature and subjected to H/D exchange. Both neutron and X-ray diffraction data sets were collected to 1.6 Šresolution. Joint neutron and X-ray refinement using phenix.refine showed significant density for residues involved in carbohydrate binding and revealed the details of a hydrogen-bonded water network around the binding site. This is the first report of a neutron structure of a CBM and will add to the understanding of protein-carbohydrate binding interactions.


Subject(s)
Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Glucans/chemistry , Recombinant Fusion Proteins/chemistry , Rhodothermus/chemistry , Xylans/chemistry , Amino Acid Motifs , Bacterial Proteins/genetics , Binding Sites , Cloning, Molecular , Crystallization , Crystallography , Endo-1,4-beta Xylanases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Models, Molecular , Molecular Sequence Data , Neutron Diffraction , Protein Binding , Protein Engineering , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Rhodothermus/enzymology , beta-Glucans/chemistry
14.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 2): 163-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25664790

ABSTRACT

Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.


Subject(s)
Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Ibuprofen/chemistry , Ibuprofen/metabolism , Crystallization , Crystallography, X-Ray , Humans , Ligands , Models, Molecular
15.
Subcell Biochem ; 75: 405-26, 2014.
Article in English | MEDLINE | ID: mdl-24146390

ABSTRACT

Carbonic anhydrases (CAs) catalyze a fundamental reaction: the reversible hydration and dehydration of carbon dioxide (CO2) and bicarbonate ([Formula: see text]), respectively. Current methods for CO2 capture and sequestration are harsh, expensive, and require prohibitively large energy inputs, effectively negating the purpose of removing CO2 from the atmosphere. Due to CA's activity on CO2 there is increasing interest in using CAs for industrial applications such as carbon sequestration and biofuel production. A lot of work in the last decade has focused on immobilizing CA onto various supports for incorporation into CO2 scrubbing applications or devices. Although the proof of principle has been validated, current CAs being tested do not withstand the harsh industrial conditions. The advent of large-scale genome sequencing projects has resulted in several emerging efforts seeking out novel CAs from a variety of microorganisms, including bacteria, micro-, and macro-algae. CAs are also being investigated for their use in medical applications, such drug delivery systems and artificial lungs. This review also looks at possible downstream uses of captured and sequestered CO2, from using it to enhance oil recovery to incorporating it into useful and financially viable products.


Subject(s)
Bicarbonates/chemistry , Biofuels , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Bacteria/enzymology , Carbonic Anhydrases/metabolism , Catalysis , Genome , Humans , Industry , Microalgae/enzymology
16.
Article in English | MEDLINE | ID: mdl-23989152

ABSTRACT

The enzyme 2-keto-3-deoxy-9-O-phosphonononic acid phosphatase (KDN9P phosphatase) functions in the pathway for the production of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, a sialic acid that is important for the survival of commensal bacteria in the human intestine. The enzyme is a member of the haloalkanoate dehalogenase superfamily and represents a good model for the active-site protonation state of family members. Crystals of approximate dimensions 1.5 × 1.0 × 1.0 mm were obtained in space group P2(1)2(1)2, with unit-cell parameters a = 83.1, b = 108.9, c = 75.7 Å. A complete neutron data set was collected from a medium-sized H/D-exchanged crystal at BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany in 18 d. Initial refinement to 2.3 Šresolution using only neutron data showed significant density for catalytically important residues.


Subject(s)
Bacterial Proteins/chemistry , Magnesium/chemistry , Phosphoric Monoester Hydrolases/chemistry , Protons , Sialic Acids/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Cations, Divalent , Crystallography , Deuterium Exchange Measurement , Escherichia coli/genetics , Gene Expression , Ligands , Models, Molecular , Neutron Diffraction , Phosphoric Monoester Hydrolases/genetics , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Scattering, Small Angle , Substrate Specificity
17.
Proc Natl Acad Sci U S A ; 109(38): 15301-6, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22949690

ABSTRACT

The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.


Subject(s)
Crystallography/methods , Hydrogen/chemistry , Neutrons , Plant Proteins/chemistry , Anisotropy , Biochemistry/methods , Brassica/metabolism , Crystallization , Deuterium/chemistry , Hydrogen Bonding , Macromolecular Substances , Molecular Conformation , Neutron Diffraction/methods , Solvents/chemistry , Water/chemistry
18.
J Am Chem Soc ; 134(36): 14726-9, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22928733

ABSTRACT

Carbonic anhydrases (CAs) catalyze the hydration of CO(2) forming HCO(3)(-) and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM or the hydrogen atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end, the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target.


Subject(s)
Acetazolamide/chemistry , Carbonic Anhydrase II/chemistry , Hydrogen/chemistry , Pharmaceutical Preparations/chemistry , Binding Sites , Carbonic Anhydrase II/metabolism , Humans , Hydrogen Bonding , Models, Molecular , Molecular Structure , Neutron Diffraction
19.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 854-60, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22751671

ABSTRACT

Post-translational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signalling mechanism which regulates many cellular processes. A low-temperature X-ray structure of the ternary complex of the PKA catalytic subunit (PKAc) with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg(2+) concentration of ∼0.5 mM (LT PKA-MgATP-IP20) revealed a single metal ion in the active site. The lack of a second metal in LT PKA-MgATP-IP20 renders the ß- and γ-phosphoryl groups of ATP very flexible, with high thermal B factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl group for transfer to a substrate, as demonstrated by comparison of the former structure with that of the LT PKA-Mg(2)ATP-IP20 complex obtained at high Mg(2+) concentration. In addition to its kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. It was found that ATP can be readily and completely hydrolyzed to ADP and a free phosphate ion in the crystals of the ternary complex PKA-Mg(2)ATP-IP20 by X-ray irradiation at room temperature. The cleavage of ATP may be aided by X-ray-generated free hydroxyl radicals, a very reactive chemical species, which move rapidly through the crystal at room temperature. The phosphate anion is clearly visible in the electron-density maps; it remains in the active site but slides about 2 Šfrom its position in ATP towards Ala21 of IP20, which mimics the phosphorylation site. The phosphate thus pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of the terminal residues 24 and 25 of IP20. X-ray structures of PKAc in complex with the nonhydrolysable ATP analogue AMP-PNP at both room and low temperature demonstrated no temperature effects on the conformation and position of IP20.


Subject(s)
Adenosine Triphosphate/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Magnesium/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Temperature
20.
Article in English | MEDLINE | ID: mdl-21543868

ABSTRACT

The overarching goal of this research project is to determine, for a subset of proteins, exact hydrogen positions using neutron diffraction, thereby improving H-atom placement in proteins so that they may be better used in various computational methods that are critically dependent upon said placement. In order to be considered applicable for neutron diffraction studies, the protein of choice must be amenable to ultrahigh-resolution X-ray crystallography, be able to form large crystals (1 mm(3) or greater) and have a modestly sized unit cell (no dimension longer than 100 Å). As such, γ-chymotrypsin is a perfect candidate for neutron diffraction. To understand and probe the role of specific active-site residues and hydrogen-bonding patterns in γ-chymotrypsin, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection. Time-of-flight neutron diffraction data were collected to 2.0 Å resolution at the PCS with ~85% completeness. Here, the first time-of-flight neutron data collection from γ-chymotrypsin is reported.


Subject(s)
Cattle , Chymotrypsin/chemistry , Animals , Crystallization , Neutron Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL