Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1344376, 2024.
Article in English | MEDLINE | ID: mdl-38524631

ABSTRACT

Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the most common chronic liver disease globally, affecting 17-38% of the general population and 50-75% of patients with obesity and/or type 2 diabetes mellitus (T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis, MASH) to fibrosis and cirrhosis with liver failure or/and hepatocellular carcinoma. Due to its increasing prevalence and associated morbidity and mortality, the disease-related and broader socioeconomic burden of NAFLD is substantial. Of note, currently there is no globally approved pharmacotherapy for NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an osteoporotic fracture occurs, which poses a markedly significant disease and socioeconomic burden. Increasing emerging data have recently highlighted links between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the process of bone remodeling. However, clinical studies are still limited demonstrating this associative relationship, while more evidence is needed towards discovering potential causative links. Since these two chronic diseases frequently co-exist, there are data suggesting that anti-osteoporosis treatments may affect NAFLD progression by impacting on its pathogenetic mechanisms. In the present review, we present on overview of the current understanding of the liver-bone cross talk and summarize the experimental and clinical evidence correlating NAFLD and osteoporosis, focusing on the possible effects of anti-osteoporotic drugs on NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Osteoporosis , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Diabetes Mellitus, Type 2/complications , Fibrosis , Liver Neoplasms/complications , Osteoporosis/drug therapy , Osteoporosis/epidemiology , Osteoporosis/etiology
2.
Rheumatology (Oxford) ; 62(2): 958-968, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35689637

ABSTRACT

OBJECTIVES: RA and primary SS carry increased atherosclerotic risk, while B-cell activating factor holds a vital role in disease pathogenesis and atherosclerosis. We aimed to compare subclinical atherosclerosis profiles between the two clinical entities and define whether BAFF genetic variants alter atherosclerotic risk. METHODS: DNA from 166 RA, 148 primary SS patients and 200 healthy controls of similar age and sex distribution was subjected to PCR-based assay for the detection of five single nucleotide polymorphisms of the BAFF gene (rs1224141, rs12583006, rs9514828, rs1041569 and rs9514827). Genotype and haplotype frequencies were determined by SNPStats software and statistical analysis was performed by SPSS and Graphpad Software. Subclinical atherosclerosis was defined by the presence of carotid/femoral plaque formation and arterial wall thickening. RESULTS: Atherosclerotic plaque formation was more frequently detected in the RA vs primary SS group (80.7% vs 62.2%, P-value <0.001), along with higher rates of family CVD history, current steroid dose and serum inflammatory markers. The TT genotype of the rs1224141 variant was more prevalent in RA but not primary SS patients with plaque and arterial wall thickening vs their counterparts without. Regarding the rs1014569 variant, among RA patients the TT genotype increased the risk for plaque formation while in primary SS patients the AT genotype conferred increased risk. Haplotype GTTTT was protective in the RA cohort, while TATTT and TTCTT haplotypes increased susceptibility for arterial wall thickening in the primary SS cohort. CONCLUSIONS: Increased inflammatory burden, higher steroid doses and distinct BAFF gene variations imply chronic inflammation and B-cell hyperactivity as key contributors for the augmented atherosclerotic risk among autoimmune patients.


Subject(s)
Arthritis, Rheumatoid , Atherosclerosis , Plaque, Atherosclerotic , Sjogren's Syndrome , Humans , Sjogren's Syndrome/complications , Sjogren's Syndrome/genetics , Sjogren's Syndrome/diagnosis , B-Cell Activating Factor/genetics , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Polymorphism, Single Nucleotide , Biomarkers
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555433

ABSTRACT

A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Diet , Disease Models, Animal , Liver/pathology
4.
Cells ; 11(16)2022 08 12.
Article in English | MEDLINE | ID: mdl-36010588

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Atherosclerosis/complications , Diabetes Mellitus, Type 2/complications , Endothelial Cells/metabolism , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications
5.
J Cell Biochem ; 123(10): 1585-1606, 2022 10.
Article in English | MEDLINE | ID: mdl-35490371

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation in the absence of excessive alcohol consumption and is strongly associated with obesity, type 2 diabetes (T2DM) and other metabolic syndrome features. NAFLD is becoming increasingly prevalent and currently constitutes the leading cause of hepatocellular carcinoma (HCC). Recently, the term metabolic (dysfunction) associated fatty liver disease (MAFLD) has been proposed reflecting more accurately the underlying pathogenesis and the cardiometabolic disorders associated to NAFLD/MAFLD. Given the vital metabolic functions of the liver to maintain the body homeostasis, an extended endoplasmic reticulum (ER) network is mandatory in hepatocytes to retain its capacity to adapt to the multiple extracellular and intracellular signals mediating metabolic changes. Dysfunction of hepatocyte ER homeostasis and disturbance of its interaction with mitochondria have been recognized to be involved in the NAFLD pathophysiology. Apart from hepatocytes, hepatic stellate cells, and Kupffer cells have been shown to play an important role in the occurrence of NAFLD and progression to nonalcoholic steatohepatitis (NASH) with possibly different roles in the different stages of the NAFLD spectrum. Furthermore, excess lipid accumulation in the liver causes lipotoxicity which interacts with ER stress and culminates in inflammation and hepatocellular damage, mechanisms crucially implicated in NASH pathogenesis. Finally, the circadian clock machinery regulates ER stress-related pathways and vice versa, thus controlling the homeostasis of the liver metabolism and being implicated in the NAFLD progression. This review presents a comprehensive overview of the current knowledge supporting the impact of ER stress signaling on NAFLD, whilst summarizing potential therapeutic interventions targeting this process.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Endoplasmic Reticulum Stress , Carcinoma, Hepatocellular/pathology , Diabetes Mellitus, Type 2/metabolism , Liver Neoplasms/pathology , Liver/metabolism
6.
Front Immunol ; 13: 836824, 2022.
Article in English | MEDLINE | ID: mdl-35371038

ABSTRACT

Background/Purpose: Primary Sjögren's Syndrome (SS) is characterized by B lymphocyte hyperactivity with B cell activating factor (BAFF) acting as an important regulator. Single Nucleotide Polymorphisms (SNPs) of the BAFF gene have been implicated in the pathogenesis of several autoimmune diseases characterized by heightened fatigue levels, including primary SS. We aimed to explore potential associations between BAFF SNPs and fatigue status of primary SS patients. Methods: Fatigue status was assessed in 199 consecutive primary SS patients (Greek cohort) using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) scale. Clinical, histological, laboratory, psychometric and personality data were also collected. DNA extracted from peripheral blood of all patients underwent evaluation for the presence of five BAFF SNPs (rs9514827, rs1041569, rs9514828, rs1224141, rs12583006) by PCR. To confirm our findings, an independent replicative cohort of 62 primary SS patients (Dutch cohort) was implemented. Finally, 52 multiple sclerosis (MS) patients were served as disease controls (MS cohort). Analysis of BAFF SNPs in association with fatigue levels was performed by the online platforms SNPStats and SHEsis and the SPSS 26 and Graph Pad Prism 8.00 software. Results: TT genotype of the rs9514828 BAFF polymorphism was significantly less frequent in the fatigued primary SS patients of the Greek cohort compared to the non-fatigued (14.1% vs 33.3%). The corresponding ORs [95%CI] in the dominant and overdominant models were 0.33 [0.15-0.72], p=0.003 and 0.42 [0.23-0.78], p=0.005 respectively. The association remained significant after adjustment for the variables contributing to fatigue in the univariate analysis (OR [95% CI]: 0.3 [0.1-0.9], p=0.026). Accordingly, in the Dutch cohort, there was a trend of lower mental fatigue among patients carrying the TT rs9514828 BAFF genotype compared to their CC counterparts (4.1 ± 2.4 vs 6.0 ± 2.2 respectively, p=0.06). The rs9514828 BAFF SNP was not significantly associated with fatigue in the MS cohort. Conclusions: We report a novel association between genetic makeup and primary SS-associated fatigue with the rs9514828 TT genotype decreasing the likelihood of fatigue development among these patients. These findings need validation in multi-center studies.


Subject(s)
B-Cell Activating Factor , Sjogren's Syndrome , B-Cell Activating Factor/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , Sjogren's Syndrome/complications , Sjogren's Syndrome/genetics
7.
Curr Obes Rep ; 10(2): 134-161, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33751456

ABSTRACT

PURPOSE OF REVIEW: Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS: The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum Stress/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Obesity , Unfolded Protein Response
8.
Rheumatology (Oxford) ; 60(7): 3072-3087, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-30838419

ABSTRACT

In primary SS (pSS), chemokines and cytokines orchestrate immunopathology driven by a complex network of interacting inflammatory cells. In recent years, the importance of chemotactic and non-chemotactic cytokines that control function, movement and placing of all cells within the inflamed exocrine glands and directing immunopathology has become increasingly clear. This paper reviews the current knowledge on chemokines and focuses on the emerging roles of novel chemotactic and non-chemotactic mediators in pSS. It highlights their contribution to pathogenic processes such as B cell hyperactivity and the formation of ectopic lymphoid structures. To this end, the role of acquired (CXCR5/CCR9 Th-cell-mediated) and innate (inflammasome/IL-1/IL-18-mediated) pathways in steering immunopathology is discussed.

9.
Clin Immunol ; 209: 108265, 2019 12.
Article in English | MEDLINE | ID: mdl-31639447

ABSTRACT

Recent data suggest an important role of type I interferons (IFN) in antiphospholipid syndrome (APS). Here we aimed to evaluate the interplay of type I and type III (or IFNλs) IFNs in APS and potential clinical and serological associations. Our findings suggest that patients with primary APS (PAPS) and systemic lupus erythematosus (SLE)/APS displayed increased type I IFN scores but decreased IFNλ1 gene expression levels compared to healthy individuals, as assessed with real-time qPCR analysis in isolated peripheral blood mononuclear cells (PBMCs). Type I IFN score/IFNλ1 ratio was remarkably higher in patients with PAPS and SLE/APS as well as in SLE patients with or without antiphospholipid antibodies (aPL) vs controls. In conclusion, our results reveal an association between low IFNλ1 expression and obstetric APS. Moreover, the type I IFN score/IFNλ1 ratio seems to be a potential marker of high risk APS given its associations with triple aPL positivity.


Subject(s)
Antibodies, Antiphospholipid/genetics , Antiphospholipid Syndrome/genetics , Gene Expression/genetics , Interferon Type I/genetics , Interferons/genetics , Interleukins/genetics , Adult , Biomarkers/metabolism , Female , Humans , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic/genetics , Male
10.
Open Biol ; 7(3)2017 03.
Article in English | MEDLINE | ID: mdl-28250105

ABSTRACT

In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Endoribonucleases/genetics , Gene Expression Regulation, Developmental , RNA Stability , Stress, Physiological , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Endoribonucleases/metabolism , Hot Temperature , Mutation , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...