Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(10): 17128-17138, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36222833

ABSTRACT

Accurate measurements of ion permeability through cellular membranes remains challenging due to the lack of suitable ion-selective probes. Here we use giant unilamellar vesicles (GUVs) as membrane models for the direct visualization of mass translocation at the single-vesicle level. Ion transport is indicated with a fluorescently adjustable DNA-based sensor that accurately detects sub-millimolar variations in K+ concentration. In combination with microfluidics, we employed our DNA-based K+ sensor for extraction of the permeation coefficient of potassium ions. We measured K+ permeability coefficients at least 1 order of magnitude larger than previously reported values from bulk experiments and show that permeation rates across the lipid bilayer increase in the presence of octanol. In addition, an analysis of the K+ flux in different concentration gradients allows us to estimate the complementary H+ flux that dissipates the charge imbalance across the GUV membrane. Subsequently, we show that our sensor can quantify the K+ transport across prototypical cation-selective ion channels, gramicidin A and OmpF, revealing their relative H+/K+ selectivity. Our results show that gramicidin A is much more selective to protons than OmpF with a H+/K+ permeability ratio of ∼104.


Subject(s)
Gramicidin , Unilamellar Liposomes , Lipid Bilayers , Protons , Ion Transport , Ion Channels , Ions , Potassium , DNA , Octanols
2.
Biophys J ; 121(12): 2223-2232, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35643630

ABSTRACT

Proton gradients are utilized by cells to power the transport activity of many membrane proteins. Synthetic cells, such as proteo-giant unilamellar vesicles, offer an advanced approach for studying the functionality of membrane proteins in isolation. However, understanding of protein-based transport in vitro requires accurate measurements of proton flux and its accompanying electrochemical gradient across the lipid bilayer. We present an approach to directly quantify the flux of protons across single cell-sized lipid vesicles under modulated electrochemical gradients. Our measurements reveal the corresponding association between proton permeation and transmembrane potential development and its relation to the chemical nature of the conjugated anion (base). In the case of formic acid, we showed that, out of the total amount of permeated protons, a fraction of ≈0.2 traverse the lipid bilayer as H+, with the rest (≈0.8) in the form of a neutral acid. For strong acids (HCl or HNO3), proton permeation was governed by translocation of H+. Accordingly, a larger proton motive force (pmf) was generated for strong acids (pmf=14.2 mV) relative to formic acid (pmf=1.3 mV). We anticipate that our approach will guide the development of protein-based transport driven by proton gradient in artificial cell models and enable a deeper understanding of how vital acids, such as fatty acids, amino acids, bile acids, and carboxylic acid-containing drugs, traverse the lipid bilayer.


Subject(s)
Lipid Bilayers , Protons , Biomimetics , Formates , Hydrogen-Ion Concentration , Lipid Bilayers/metabolism , Membrane Proteins
3.
J Phys Condens Matter ; 34(34)2022 06 23.
Article in English | MEDLINE | ID: mdl-35679844

ABSTRACT

We use video microscopy to study the full capture process for colloidal particles transported through microfluidic channels by a pressure-driven flow. In particular, we obtain trajectories for particles as they move from the bulk into confinement, using these to map in detail the spatial velocity and concentration fields for a range of different flow velocities. Importantly, by changing the height profiles of our microfluidic devices, we consider systems for which flow profiles in the channel are the same, but flow fields in the reservoir differ with respect to the quasi-2D monolayer of particles. We find that velocity fields and profiles show qualitative agreement with numerical computations of pressure-driven fluid flow through the systems in the absence of particles, implying that in the regimes studied here particle-particle interactions do not strongly perturb the flow. Analysis of the particle flux through the channel indicates that changing the reservoir geometry leads to a change between long-range attraction of the particles to the pore and diffusion-to-capture-like behaviour, with concentration fields that show qualitative changes based on device geometry. Our results not only provide insight into design considerations for microfluidic devices, but also a foundation for experimental elucidation of the concept of a capture radius. This long standing problem plays a key role in transport models for biological channels and nanopore sensors.


Subject(s)
Ion Channels , Microfluidics , Diffusion , Microfluidics/methods , Microscopy, Video
4.
Anal Chem ; 94(27): 9530-9539, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35760038

ABSTRACT

Host defense or antimicrobial peptides hold promise for providing new pipelines of effective antimicrobial agents. Their activity quantified against model phospholipid membranes is fundamental to a detailed understanding of their structure-activity relationships. However, classical characterization assays often lack the ability to achieve this insight. Leveraging a highly parallelized microfluidic platform for trapping and studying thousands of giant unilamellar vesicles, we conducted quantitative long-term microscopy studies to monitor the membrane-disruptive activity of archetypal antimicrobial peptides with a high spatiotemporal resolution. We described the modes of action of these peptides via measurements of the disruption of the vesicle population under the conditions of continuous peptide dosing using a range of concentrations and related the observed modes to the molecular activity mechanisms of these peptides. The study offers an effective approach for characterizing membrane-targeting antimicrobial agents in a standardized manner and for assigning specific modes of action to the corresponding antimicrobial mechanisms.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Phospholipids/chemistry , Unilamellar Liposomes/chemistry
5.
Sci Rep ; 12(1): 4005, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256720

ABSTRACT

Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Bacteria , Microfluidics , Structure-Activity Relationship
7.
ACS Synth Biol ; 10(11): 3105-3116, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34761904

ABSTRACT

Cell-sized vesicles like giant unilamellar vesicles (GUVs) are established as a promising biomimetic model for studying cellular phenomena in isolation. However, the presence of residual components and byproducts, generated during vesicles preparation and manipulation, severely limits the utility of GUVs in applications like synthetic cells. Therefore, with the rapidly growing field of synthetic biology, there is an emergent demand for techniques that can continuously purify cell-like vesicles from diverse residues, while GUVs are being simultaneously synthesized and manipulated. We have developed a microfluidic platform capable of purifying GUVs through stream bifurcation, where a vesicles suspension is partitioned into three fractions: purified GUVs, residual components, and a washing solution. Using our purification approach, we show that giant vesicles can be separated from various residues─which range in size and chemical composition─with a very high efficiency (e = 0.99), based on size and deformability of the filtered objects. In addition, by incorporating the purification module with a microfluidic-based GUV-formation method, octanol-assisted liposome assembly (OLA), we established an integrated production-purification microfluidic unit that sequentially produces, manipulates, and purifies GUVs. We demonstrate the applicability of the integrated device to synthetic biology through sequentially fusing SUVs with freshly prepared GUVs and separating the fused GUVs from extraneous SUVs and oil droplets at the same time.


Subject(s)
Microfluidics/methods , Synthetic Biology/methods , Artificial Cells/chemistry , Liposomes/chemistry , Unilamellar Liposomes/chemistry , Water/chemistry
8.
ACS Nano ; 15(6): 9679-9689, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33885289

ABSTRACT

Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8-11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.


Subject(s)
Anti-Infective Agents , Nanopores , Fractals , Lipid Bilayers , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...