Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Environ Geochem Health ; 46(6): 202, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696051

Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.


Environmental Monitoring , Soil Pollutants , Spectrometry, X-Ray Emission , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , Multivariate Analysis , Environmental Monitoring/methods , Mining , Portugal , Principal Component Analysis , Soil/chemistry , Tin/analysis , Magnetic Phenomena , Coal Mining , Coal
2.
Front Toxicol ; 6: 1334169, 2024.
Article En | MEDLINE | ID: mdl-38465195

Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials. Methods: Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor. Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.

3.
Environ Sci Pollut Res Int ; 30(49): 107650-107660, 2023 Oct.
Article En | MEDLINE | ID: mdl-37735332

One of the most important mining areas in the Douro Carboniferous Basin is the Pejão Coalfield. In the summer of 2017, a wildfire promoted the ignition and self-burning some of the coal waste piles in the area and caused important environmental changes, promoting a new heterogenic pedological zonation. This study aims to assess the ecotoxicological effects of 25 soil elutriates from these different soil types in seed germination and individual (emergence, growth, and morphologic alterations) and subindividual parameters in Lactuca sativa. The different evaluated endpoints were differently affected regarding the soil elutriate revealing the high heterogeneity of soil characteristics. The presence of different potentially toxic elements (e.g., Cd, Cr, Pb, Zn) in soil elutriates, even in low concentrations, caused effects on L. sativa development. Unburned coal wastes and downhill soil elutriates were able to inhibit the germination of L. sativa and affect them individually and sub-individually (decrease in size, biomass, and presence of morphological alterations). Additionally, it was observed that all soil elutriates induce a decrease in root size. The results highlight the importance of using elutriate samples in phytotoxicity studies of coal mining waste, since the tailings lixiviate may reduce plant establishment and growth, affecting the terrestrial ecosystems. The integrated use of seed germination assays with the analysis of morphological and biochemical alterations in plants proved to be sensitive parameters to evaluate the phytotoxicity of coal mining wastes.


Coal Mining , Soil Pollutants , Lactuca , Soil Pollutants/toxicity , Soil Pollutants/analysis , Coal , Portugal , Ecosystem , Plants , Soil
4.
Environ Sci Pollut Res Int ; 28(1): 819-831, 2021 Jan.
Article En | MEDLINE | ID: mdl-32820446

The investigation about wildfires has demonstrated that research should include studies on the overall assessment of the processes, thus promoting the public awareness about impacts. The aim of this study is to assess the changes on the carbon content of soils affected by wildfires in Caramulo Mountain (Portugal) to therefore identify the environmental impacts arisen from those changes. Soils from different parent rocks, affected and non-affected by wildfires, were collected. Petrographic and geochemical methods were used to identify changes caused by the wildfires in the organic fraction of soils. The results demonstrate that changes in soils composition after wildfires include the production of charcoal and pyrogenic polycyclic aromatic hydrocarbons (PAH). The incorporation of charcoal from biomass burning in soils overtime and the production of pyrolytic PAH are of environmental concern since these compounds are known to be harmful to the environment and ecosystems and are human carcinogens. The concentration of BkF-benzo[k]fluoranthene, known as probable human carcinogen, exceeds the reference values for contaminated soils. Once in soils these compounds can be removed by percolation affecting waters and, consequently, biodiversity and human health.


Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Wildfires , Ecosystem , Environmental Monitoring , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Portugal , Soil , Soil Pollutants/analysis
5.
Sci Total Environ ; 452-453: 98-107, 2013 May 01.
Article En | MEDLINE | ID: mdl-23500403

The generation of anthropogenic carbonaceous matter and mixed crystalline/amorphous mineral ultrafine/nano-particles in the 1 to 100 nm size range by worldwide coal power plants represents serious environmental problems due to their potential hazards. Coal fly ash (CFA) that resulted from anthracite combustion in a Portuguese thermal power plant was studied in this work. The physico-chemical characterization of ultrafine/nano-particles present in the CFA samples and their interaction with environment are the aim of this study. The methodologies applied for this work were field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy (HR-TEM/EDS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Some hazardous volatile elements, C, N, S and Hg contents were also determined in the studied samples. Generally, the CFA samples comprise carbonaceous, glassy and metallic solid spheres with some containing mixed amorphous/crystalline phases. The EDS analysis coupled with the FE-SEM and HR-TEM observations of the fly ash particles with 100 to 0.1 nm demonstrates that these materials contain a small but significant proportion of encapsulated HVEs. In addition, the presence of abundant multi-walled carbon nanotubes (MWCNTs) and amorphous carbon particles, both containing hazardous volatile elements (HVEs), was also evidenced by the FE-SEM/EDS and HR-TEM/EDS analysis. A wide range of organic and inorganic compounds was determined by chemical maps obtained in ToF-SIMS analysis.


Air Pollutants/analysis , Coal Ash/analysis , Microscopy, Electron, Scanning/methods , Nanoparticles/analysis , Spectrometry, Mass, Secondary Ion/methods , Spectrometry, X-Ray Emission/methods , Coal/analysis , Coal Ash/chemistry , Nanotubes, Carbon/analysis , Portugal , Power Plants
6.
J Hazard Mater ; 199-200: 105-10, 2012 Jan 15.
Article En | MEDLINE | ID: mdl-22119194

The coal waste material that results from Douro Coalfield exploitation was analyzed by gas chromatography with mass spectrometry (GC-MS) for the identification and quantification of the 16 polycyclic aromatic hydrocarbons (PAHs), defined as priority pollutants. It is expected that the organic fraction of the coal waste material contains PAHs from petrogenic origin, and also from pyrolytic origin in burning coal waste piles. The results demonstrate some similarity in the studied samples, being phenanthrene the most abundant PAH followed by fluoranthene and pyrene. A petrogenic contribution of PAHs in unburned samples and a mixture of PAHs from petrogenic and pyrolytic sources in the burning/burnt samples were identified. The lowest values of the sum of the 16 priority PAHs found in burning/burnt samples and the depletion LMW PAHs and greater abundance of HMW PAHs from the unburned coal waste material relatively to the burning/burnt material demonstrate the thermal transformation attributed to the burning process. The potential environmental impact associated with the coal waste piles are related with the release of petrogenic and pyrolytic PAHs in particulate and gaseous forms to soils, sediments, groundwater, surface water, and biodiversity.


Coal , Industrial Waste , Polycyclic Compounds/analysis , Molecular Weight , Polycyclic Compounds/chemistry , Portugal
7.
Sci Total Environ ; 408(23): 6032-41, 2010 Nov 01.
Article En | MEDLINE | ID: mdl-20855106

A range of carbon nanoparticles, agglomerates and mineral phases have been identified in burning coal waste pile materials from the Douro Coalfield of Portugal, as a basis for identifying their potential environmental and human health impacts. The fragile nature and fine particle size of these materials required novel characterization methods, including energy-dispersive X-ray spectrometry (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) techniques. The chemical composition and possible correlations with morphology of the nanominerals and associated ultra-fine particles have been evaluated in the context of human health exposure, as well as in relation to management of such components in coal-fire environments.


Carbon/analysis , Coal/analysis , Minerals/analysis , Nanoparticles/analysis , Waste Products/analysis , Environmental Monitoring , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Portugal , Spectrometry, X-Ray Emission
...