Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Cell Metab ; 36(6): 1371-1393.e7, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38718791

The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.


Carcinoma, Hepatocellular , Fasting , Liver Neoplasms , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , PPAR alpha , Phosphoenolpyruvate Carboxykinase (GTP) , PPAR alpha/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Mice , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Male , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Signal Transduction , Intermittent Fasting
2.
Nat Cancer ; 4(10): 1437-1454, 2023 Oct.
Article En | MEDLINE | ID: mdl-37640929

Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Programmed Cell Death 1 Receptor/genetics , Monitoring, Immunologic , T-Lymphocytes, Regulatory/pathology
3.
Nat Metab ; 4(12): 1632-1649, 2022 12.
Article En | MEDLINE | ID: mdl-36539621

Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.


Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Non-alcoholic Fatty Liver Disease/complications , Liver Neoplasms/pathology , Risk Factors , Disease Models, Animal , Tumor Microenvironment
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article En | MEDLINE | ID: mdl-33798093

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Aging/metabolism , Bile Duct Diseases/etiology , Bile Duct Diseases/metabolism , Caspase 8/metabolism , Cysts/etiology , Cysts/metabolism , MAP Kinase Signaling System , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis , Biopsy , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Immunophenotyping , Liver Diseases/etiology , Liver Diseases/metabolism , Mice , Mitogen-Activated Protein Kinase 8/deficiency , Necroptosis
5.
J Cell Physiol ; 235(2): 1103-1119, 2020 02.
Article En | MEDLINE | ID: mdl-31240713

Osteosarcoma (OS) is a rare, insidious tumor of mesenchymal origin that most often affects children, adolescents, and young adults. While the primary tumor can be controlled with chemotherapy and surgery, it is the lung metastases that are eventually fatal. Multiple studies into the initial drivers of OS development have been undertaken, but few of these have examined innate immune/inflammatory signaling. A central figure in inflammatory signaling is the innate immune/stress-activated kinase double-stranded RNA-dependent protein kinase (PKR). To characterize the role of PKR in OS, U2OS, and SaOS-2 osteosarcoma cell lines were stably transfected with wild-type or dominant-negative (DN) PKR. Overexpression of PKR enhanced colony formation in soft agar (U2OS and SaOS-2), enhanced cellular migration (U2OS), and invasive migration (SaOS-2). In contrast, overexpression of DN-PKR inhibited attachment-independent growth, migration and/or invasion. These data demonstrate a role for inflammatory signaling in OS formation and migration/invasion and suggest the status of PKR expression/activation may have prognostic value.


Osteosarcoma/metabolism , eIF-2 Kinase/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Cell Survival , Doxorubicin/pharmacology , Fibrosarcoma , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Mice , NIH 3T3 Cells , RNA, Double-Stranded , Vincristine/pharmacology , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics
6.
FASEB J ; 33(8): 9044-9061, 2019 08.
Article En | MEDLINE | ID: mdl-31095429

Murine thymoma viral oncogene homolog (AKT) kinases target both cytosolic and nuclear substrates for phosphorylation. Whereas the cytosolic substrates are known to be closely associated with the regulation of apoptosis and autophagy or metabolism and protein synthesis, the nuclear substrates are, for the most part, poorly understood. To better define the role of nuclear AKT, potential AKT substrates were isolated from the nuclear lysates of leukemic cell lines using a phosphorylated AKT substrate antibody and identified in tandem mass spectrometry. Among the proteins identified was adenosine deaminase acting on RNA (ADAR)1p110, the predominant nuclear isoform of the adenosine deaminase acting on double-stranded RNA. Coimmunoprecipitation studies and in vitro kinase assays revealed that AKT-1, -2, and -3 interact with both ADAR1p110 and ADAR2 and phosphorylate these RNA editases. Using site-directed mutagenesis of suspected AKT phosphorylation sites, AKT was found to primarily phosphorylate ADAR1p110 and ADAR2 on T738 and T553, respectively, and overexpression of the phosphomimic mutants ADAR1p110 (T738D) and ADAR2 (T553D) resulted in a 50-100% reduction in editase activity. Thus, activation of AKT has a direct and major impact on RNA editing.-Bavelloni, A., Focaccia, E., Piazzi, M., Raffini, M., Cesarini, V., Tomaselli, S., Orsini, A., Ratti, S., Faenza, I., Cocco, L., Gallo, A., Blalock, W. L. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity.


Adenosine Deaminase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , Adenosine Deaminase/chemistry , Adenosine Deaminase/genetics , Amino Acid Substitution , Binding Sites/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Enzyme Activation , HEK293 Cells , Humans , Models, Biological , Mutagenesis, Site-Directed , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , RNA Editing , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
7.
J Cell Physiol ; 234(7): 10907-10917, 2019 07.
Article En | MEDLINE | ID: mdl-30536897

Osteosarcoma (OS) is the most common pediatric malignant neoplasia of the skeletal system. It is characterized by a high degree of malignancy and a severe tendency to metastasize. In the past decade, many studies have provided evidence that the phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer, and has a critical role in driving tumor initiation and progression. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120, which has recently entered clinical Phase II for treatment of PI3K-dependent cancers on three OS cell lines. We observed a concentration- and time-dependent decrease of Ser473 p-Akt as well as reduced levels of Thr37/46 p-4E-BP1, an indicator of the mammalian target of rapamycin complex 1 activity. All OS cell lines used in this study responded to BKM120 treatment with an arrest of cell proliferation, an increase in cell mortality, and an increase in caspase-3 activity. MG-63 cells were the most responsive cell line, demonstrating a significant increase in sub-G1 cells, and a rapid induction of cell death. Furthermore, we demonstrate that BKM120 is more effective when used in combination with other standard chemotherapeutic drugs. Combining BKM120 with vincristine demonstrated a more synergistic effect than BKM120 with doxorubicin in all the lines. Hence, we suggest that BKM120 may be a novel therapy for the treatment of OS presenting with anomalous upregulation of the PI3K signaling pathway.


Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Morpholines/pharmacology , Osteosarcoma/drug therapy , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Bone Neoplasms/enzymology , Bone Neoplasms/pathology , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Osteosarcoma/enzymology , Osteosarcoma/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
8.
Anticancer Res ; 37(12): 6511-6521, 2017 12.
Article En | MEDLINE | ID: mdl-29187425

microRNAs (miRNAs) are a group of highly conserved small non-coding RNAs that were found to enhance mRNA degradation or inhibit post-transcriptional translation. Accumulating evidence indicates that miRNAs contribute to tumorigenesis and cancer metastasis. microRNA-210 has been largely studied in the past several years and has been identified as a major miRNA induced under hypoxia. A variety of miR-210 targets have been identified pointing to its role, not only in mitochondrial metabolism, but also in angiogenesis, the DNA damage response, cell proliferation, and apoptosis. Based on earlier research findings, this review aims to provide a current overview on the involvement of miRNA-210 in biological processes and diseases.


Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/genetics , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
9.
Anticancer Res ; 37(8): 4103-4109, 2017 08.
Article En | MEDLINE | ID: mdl-28739694

BACKGROUND/AIM: Kinamycin F is a bacterial metabolite which contains an unusual and potentially reactive diazo group that is known for its ability to inhibit cell growth. In this study, the potential anti-tumor activity of kinamycin F was investigated in three human osteosarcoma cell lines, MG-63, U-2 OS and HOS as an antitumor agent with a potentially novel target. MATERIALS AND METHODS: Proliferation and cell viability were measured in three human osteosarcoma cell lines by commercially available kits. We also evaluated the effects of the drug on cell cycle progression using the Muse™ Cell Analyzer. Caspase-3 activity was determined by a fluorometric EnzChek assay kit. Finally, following treatment with kinamycin F the protein levels of cyclin D3, cyclin A and cdK-2 were examined. RESULTS: Kinamycin F induced a concentration-dependent cell death in all the three cell lines. Flow cytometry revealed that kinamycin F treatment at 1 µM concentration significantly increased the cell population in the G2/M-phase (60-65%). Kinamycin F activated caspase 3 in all the three cell lines, clearly demonstrating that the growth inhibitory effect of kinamycin F can be attributed to apoptosis induction. Finally, kinamycin F suppressed osteosarcoma cell proliferation affecting cyclin A and D3 expression. CONCLUSION: Understanding the mechanism by which kinamycin F exerts its ability to inhibit cell growth may be a step forward in the development of new therapeutic strategies for the treatment of OS.


Cell Proliferation/drug effects , Osteosarcoma/drug therapy , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , G2 Phase/drug effects , Humans , Osteosarcoma/pathology , Quinones/administration & dosage
...