Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
2.
J Immunol ; 193(12): 6061-9, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25392524

ABSTRACT

The outcome of mouse CMV (MCMV) infection varies among different inbred mouse strains depending on NK cell effector functions governed through recognition receptor triggering. NK cells from different mouse strains possess diverse repertoires of activating or inhibitory Ly49 receptors, which share some of their polymorphic MHC class I (MHC-I) ligands. By examining the NK cell response to MCMV infection in novel BALB substrains congenic for different MHC (or H-2 in mice) haplotypes, we show that recognition of viral MHC-I-like protein m157 by inhibitory Ly49C receptor allows escape from NK cell control of viral replication. Dominant inhibition by Ly49C bound to self-H-2(b) encoded MHC-I molecules masks this effect, which only becomes apparent in distinct H-2 haplotypes, such as H-2(f). The recognition of m157-expressing cells by Ly49C resulted in both decreased NK cell killing in vitro and reduced rejection in vivo. Further, control of infection with m157-deletant (Δm157) MCMV was improved in mice carrying H-2 molecules unrecognized by Ly49C but allowing expansion of NK cell effectors expressing activating Ly49L receptors. Hence, our study is the first, to our knowledge, to demonstrate that MHC-I mimicry strategies used by MCMV to avoid NK cell control are biologically relevant during in vivo viral infection. Of value for human studies is that only a few genetic assortments conditional on the repertoires of viral MHC-I-like proteins/host NK receptors/MHC haplotypes should allow efficient protection against CMV infection.


Subject(s)
Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Muromegalovirus/genetics , Viral Proteins/genetics , Animals , Cell Line , Cytotoxicity, Immunologic , Disease Susceptibility/immunology , Female , Genetic Predisposition to Disease , H-2 Antigens/genetics , H-2 Antigens/immunology , Herpesviridae Infections/genetics , Mice , Mice, Inbred Strains , Mice, Transgenic , Muromegalovirus/immunology , Muromegalovirus/pathogenicity , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Viral Proteins/immunology
3.
PLoS Pathog ; 9(9): e1003637, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24068938

ABSTRACT

Herpes simplex encephalitis (HSE) is a lethal neurological disease resulting from infection with Herpes Simplex Virus 1 (HSV-1). Loss-of-function mutations in the UNC93B1, TLR3, TRIF, TRAF3, and TBK1 genes have been associated with a human genetic predisposition to HSE, demonstrating the UNC93B-TLR3-type I IFN pathway as critical in protective immunity to HSV-1. However, the TLR3, UNC93B1, and TRIF mutations exhibit incomplete penetrance and represent only a minority of HSE cases, perhaps reflecting the effects of additional host genetic factors. In order to identify new host genes, proteins and signaling pathways involved in HSV-1 and HSE susceptibility, we have implemented the first genome-wide mutagenesis screen in an in vivo HSV-1 infectious model. One pedigree (named P43) segregated a susceptible trait with a fully penetrant phenotype. Genetic mapping and whole exome sequencing led to the identification of the causative nonsense mutation L3X in the Receptor-type tyrosine-protein phosphatase C gene (Ptprc(L3X)), which encodes for the tyrosine phosphatase CD45. Expression of MCP1, IL-6, MMP3, MMP8, and the ICP4 viral gene were significantly increased in the brain stems of infected Ptprc(L3X) mice accounting for hyper-inflammation and pathological damages caused by viral replication. Ptprc(L3X) mutation drastically affects the early stages of thymocytes development but also the final stage of B cell maturation. Transfer of total splenocytes from heterozygous littermates into Ptprc(L3X) mice resulted in a complete HSV-1 protective effect. Furthermore, T cells were the only cell population to fully restore resistance to HSV-1 in the mutants, an effect that required both the CD4⁺ and CD8⁺ T cells and could be attributed to function of CD4⁺ T helper 1 (Th1) cells in CD8⁺ T cell recruitment to the site of infection. Altogether, these results revealed the CD45-mediated T cell function as potentially critical for infection and viral spread to the brain, and also for subsequent HSE development.


Subject(s)
Codon, Nonsense , Encephalitis, Herpes Simplex/genetics , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Immunity, Cellular , Leukocyte Common Antigens/metabolism , Th1 Cells/immunology , Animals , Brain Stem/immunology , Brain Stem/metabolism , Brain Stem/pathology , Brain Stem/virology , Cells, Cultured , Crosses, Genetic , Disease Susceptibility , Encephalitis, Herpes Simplex/etiology , Female , Genome-Wide Association Study , Herpes Simplex/pathology , Herpes Simplex/physiopathology , Herpes Simplex/virology , Leukocyte Common Antigens/genetics , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutagenesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/immunology , Neurons/metabolism , Neurons/pathology , Neurons/virology , Survival Analysis , Th1 Cells/metabolism , Th1 Cells/pathology , Th1 Cells/virology
4.
Nat Immunol ; 13(9): 843-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22863752

ABSTRACT

A large gap in our understanding of infant immunity is why natural killer (NK) cell responses are deficient, which makes infants more prone to viral infection. Here we demonstrate that transforming growth factor-ß (TGF-ß) was responsible for NK cell immaturity during infancy. We found more fully mature NK cells in CD11c(dnR) mice, whose NK cells lack TGF-ß receptor (TGF-ßR) signaling. Ontogenic maturation of NK cells progressed faster in the absence of TGF-ß signaling, which results in the formation of a mature NK cell pool early in life. As a consequence, infant CD11c(dnR) mice efficiently controlled viral infections. These data thus demonstrate an unprecedented role for TGF-ß in ontogeny that can explain why NK cell responses are deficient early in life.


Subject(s)
Immune System/cytology , Immune System/growth & development , Killer Cells, Natural/cytology , Transforming Growth Factor beta/immunology , Animals , Animals, Newborn , Cell Differentiation/immunology , Flow Cytometry , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Stem Cells , Transforming Growth Factor beta/metabolism
5.
Front Immunol ; 3: 425, 2012.
Article in English | MEDLINE | ID: mdl-23346087

ABSTRACT

The association of Natural Killer (NK) cell deficiencies with disease susceptibility has established a central role for NK cells in host defence. In this context, genetic approaches have been pivotal in elucidating and characterizing the molecular mechanisms underlying NK cell function. To this end, homozygosity mapping and linkage analysis in humans have identified mutations that impact NK cell function and cause life-threatening diseases. However, several critical restrictions accompany genetic studies in humans. Studying NK cell pathophysiology in a mouse model has therefore proven a useful tool. The relevance of the mouse model is underscored by the similarities that exist between cell-structure-sensing receptors and the downstream signaling that leads to NK cell activation. In this review, we provide an overview of how human and mouse quantitative trait locis (QTLs) have facilitated the identification of genes that modulate NK cell development, recognition, and killing of target cells.

6.
J Virol ; 86(4): 2165-75, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156533

ABSTRACT

Natural killer (NK) cells and CD8(+) T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8(+) T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8(+) T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8(+) T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8(+) T cells has only a minor effect on the early control of wild-type MCMV, CD8(+) T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8(+) T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8(+) T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H-m157 interaction.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpesviridae Infections/veterinary , Killer Cells, Natural/immunology , Muromegalovirus/immunology , Rodent Diseases/immunology , Animals , CD8-Positive T-Lymphocytes/chemistry , Cytokines/chemistry , Cytokines/immunology , Female , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Kinetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus/genetics , Muromegalovirus/physiology , Rodent Diseases/virology
7.
PLoS Genet ; 7(4): e1001368, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533075

ABSTRACT

The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.


Subject(s)
Genes, MHC Class I , Herpesviridae Infections/immunology , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , Receptors, Natural Killer Cell/genetics , Animals , Cells, Cultured , Gene Frequency , Herpesviridae Infections/virology , Immunity, Innate , Killer Cells, Natural/immunology , Mice , Mice, Congenic , Mice, Inbred Strains , Mice, Transgenic , Muromegalovirus/pathogenicity , Phenotype , Receptors, Natural Killer Cell/immunology , Transgenes , Viral Load
8.
Mamm Genome ; 22(1-2): 6-18, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20882286

ABSTRACT

Cytomegaloviruses (CMV) are ubiquitous, opportunistic DNA viruses that have mastered the art of immune evasion through their ability to mimic host proteins or to inhibit antiviral responses. The study of the host response against CMV infection has illuminated many facets of the complex interaction between host and pathogen. Here, we review evidence derived from the animal models and human studies that supports the central role played by innate immune receptors in the recognition of virus infection and their participation in the many layers of defense.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Receptors, Immunologic/immunology , Animals , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , Humans
9.
Methods Mol Biol ; 612: 393-409, 2010.
Article in English | MEDLINE | ID: mdl-20033656

ABSTRACT

Genetically distinct inbred strains of mice that differ in their susceptibility to mouse cytomegalovirus (MCMV) are invaluable for dissecting complex host-pathogen interactions. Their study has allowed the identification of host-resistance loci, including several activating NK cell receptors of major histocompatibility complex (MHC) class I. In this chapter, we provide a practical guide to the genetic mapping and functional characterization of NK cell receptors that control innate immunity against MCMV via specific recognition of infected cells.


Subject(s)
Chromosome Mapping/methods , Genetic Loci/genetics , Killer Cells, Natural/metabolism , Muromegalovirus/physiology , Receptors, Natural Killer Cell/genetics , Analysis of Variance , Animals , Cell Line , Cloning, Molecular , DNA, Complementary/genetics , Female , Gene Expression Regulation , Genetic Markers/genetics , Genome/genetics , Genotype , Immunity, Innate/genetics , Killer Cells, Natural/immunology , Male , Mice , Mice, Inbred Strains , Phenotype , Pregnancy , Substrate Specificity
10.
J Exp Med ; 206(10): 2235-51, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19720840

ABSTRACT

Natural killer (NK) cells have the potential to deliver both direct antimicrobial effects and regulate adaptive immune responses, but NK cell yields have been reported to vary greatly during different viral infections. Activating receptors, including the Ly49H molecule recognizing mouse cytomegalovirus (MCMV), can stimulate NK cell expansion. To define Ly49H's role in supporting NK cell proliferation and maintenance under conditions of uncontrolled viral infection, experiments were performed in Ly49h(-/-), perforin 1 (Prf1)(-/-), and wild-type (wt) B6 mice. NK cell numbers were similar in uninfected mice, but relative to responses in MCMV-infected wt mice, NK cell yields declined in the absence of Ly49h and increased in the absence of Prf1, with high rates of proliferation and Ly49H expression on nearly all cells. The expansion was abolished in mice deficient for both Ly49h and Prf1 (Ly49h(-/-)Prf1(-/-)), and negative consequences for survival were revealed. The Ly49H-dependent protection mechanism delivered in the absence of Prf1 was a result of interleukin 10 production, by the sustained NK cells, to regulate the magnitude of CD8 T cell responses. Thus, the studies demonstrate a previously unappreciated critical role for activating receptors in keeping NK cells present during viral infection to regulate adaptive immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Interleukin-10/biosynthesis , Killer Cells, Natural/physiology , Lymphocytic Choriomeningitis/immunology , NK Cell Lectin-Like Receptor Subfamily A/physiology , Pore Forming Cytotoxic Proteins/physiology , Animals , CD3 Complex/analysis , Interleukin-2/pharmacology , Interleukins/physiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Perforin
11.
J Exp Med ; 205(13): 3187-99, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-19075287

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2K(b). Conversely, CpG-ODN-dependent IFN-alpha production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2K(b) ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo.


Subject(s)
Dendritic Cells/immunology , Hematopoiesis/physiology , Histocompatibility Antigens Class I/immunology , Immunity, Innate/immunology , Major Histocompatibility Complex/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , Animals , Dendritic Cells/cytology , Dendritic Cells/metabolism , Herpesviridae Infections/immunology , Histocompatibility Antigens Class I/genetics , Interferon-alpha/immunology , Interferon-alpha/metabolism , Mice , Mice, Knockout , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/genetics , Oligodeoxyribonucleotides/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/immunology
12.
J Immunol ; 181(9): 6394-405, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18941230

ABSTRACT

Cmv1 was the first mouse cytomegalovirus (MCMV) resistance locus identified in C57BL/6 mice. It encodes Ly49H, a NK cell-activating receptor that specifically recognizes the m157 viral protein at the surface of MCMV-infected cells. To dissect the effect of the Ly49h gene in host-pathogen interactions, we generated C57BL/6 mice lacking the Ly49h region. We found that 36 h after MCMV infection, the lack of Ly49h resulted in high viral replication in the spleen and dramatically enhanced proinflammatory cytokine production in the serum and spleen. At later points in time, we observed that MCMV induced a drastic loss in CD8(+) T cells in B6.Ly49h(-/-) mice, probably reflecting severe histological changes in the spleen. Overall, our results indicate that Ly49H(+) NK cells contain a systemic production of cytokines that may contribute to the MCMV-induced pathology and play a central role in maintaining normal spleen cell microarchitecture. Finally, we tested the ability of B6.Ly49h(-/-) mice to control replication of Leishmania major and ectromelia virus. Resistance to these pathogens has been previously mapped within the NK gene complex. We found that the lack of Ly49H(+) NK cells is not associated with an altered resistance to L. major. In contrast, absence of Ly49H(+) NK cells seems to afford additional protection against ectromelia infection in C57BL/6 mice, suggesting that Ly49H may recognize ectromelia-infected cells with detrimental effects. Taken together, these results confirm the pivotal role of the Ly49H receptor during MCMV infection and open the way for further investigations in host-pathogen interactions.


Subject(s)
Genetic Predisposition to Disease/genetics , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Immunity, Innate/genetics , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/deficiency , NK Cell Lectin-Like Receptor Subfamily A/genetics , Receptors, Natural Killer Cell/genetics , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , Cytokines/biosynthesis , Cytokines/physiology , Disease Models, Animal , Ectromelia virus/immunology , Herpesviridae Infections/metabolism , Herpesviridae Infections/pathology , Leishmania major/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Molecular Sequence Data , Muromegalovirus/pathogenicity , NK Cell Lectin-Like Receptor Subfamily A/physiology , Receptors, Natural Killer Cell/physiology , Spleen/cytology , Spleen/immunology , Spleen/metabolism
13.
Cell Host Microbe ; 3(2): 59-61, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18312838

ABSTRACT

Host responses to cytomegalovirus infection include initial early production of alpha and beta interferons, also called type I interferons, which are elicited directly by viral products via Toll-like receptors. New data indicate that, preceding these events, an earlier critical type I interferon elicited in primary infected stromal cells via the lymphotoxin beta receptor system and mediated by B cells is necessary to kick-start an efficient antiviral response.


Subject(s)
Cytomegalovirus Infections/immunology , Interferon Type I/immunology , Muromegalovirus/immunology , Animals , B-Lymphocytes/metabolism , Lymphotoxin alpha1, beta2 Heterotrimer/metabolism , Lymphotoxin beta Receptor/metabolism , Mice , Stromal Cells/immunology , Stromal Cells/metabolism , Toll-Like Receptors/metabolism
14.
J Immunol ; 176(9): 5478-85, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16622016

ABSTRACT

CMV can cause life-threatening disease in immunodeficient hosts. Experimental infection in mice has revealed that the genetically determined natural resistance to murine CMV (MCMV) may be mediated either by direct recognition between the NK receptor Ly49H and the pathogen-encoded glycoprotein m157 or by epistatic interaction between Ly49P and the host MHC H-2D(k). Using stocks of wild-derived inbred mice as a source of genetic diversity, we found that PWK/Pas (PWK) mice were naturally resistant to MCMV. Depletion of NK cells subverted the resistance. Analysis of backcrosses to susceptible BALB/c mice revealed that the phenotype was controlled by a major dominant locus effect linked to the NK gene complex. Haplotype analysis of 41 polymorphic markers in the Ly49h region suggested that PWK mice may share a common ancestral origin with C57BL/6 mice; in the latter, MCMV resistance is dependent on Ly49H-m157 interactions. Nevertheless, PWK mice retained viral resistance against m157-defective mutant MCMV. These results demonstrate the presence of yet another NK cell-dependent viral resistance mechanism, named Cmv4, which most likely encodes for a new NK activating receptor. Identification of Cmv4 will expand our understanding of the specificity of the innate recognition of infection by NK cells.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Amino Acid Sequence , Animals , Antigens, Ly/chemistry , Antigens, Ly/genetics , Cytomegalovirus/classification , Female , Haplotypes/genetics , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Ligands , Male , Mice , Molecular Sequence Data , Multigene Family , NK Cell Lectin-Like Receptor Subfamily A , Receptors, Immunologic/metabolism , Receptors, NK Cell Lectin-Like , Receptors, Natural Killer Cell , Receptors, Virus/classification , Receptors, Virus/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL