Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nature ; 620(7975): 881-889, 2023 Aug.
Article En | MEDLINE | ID: mdl-37558878

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Autoimmune Diseases , Central Nervous System , Dendritic Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Lactic Acid , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control , Autoimmunity , Central Nervous System/cytology , Central Nervous System/immunology , Central Nervous System/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Probiotics/therapeutic use , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , Feedback, Physiological , Lactase/genetics , Lactase/metabolism , Single-Cell Analysis
2.
bioRxiv ; 2023 Mar 21.
Article En | MEDLINE | ID: mdl-36993446

Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.

3.
Science ; 372(6540)2021 04 23.
Article En | MEDLINE | ID: mdl-33888612

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Astrocytes/physiology , Cell Communication , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Microglia/physiology , Multiple Sclerosis/physiopathology , Single-Cell Analysis , Animals , Antigens, CD/metabolism , Brain/pathology , Brain/physiopathology , Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ephrin-B3/metabolism , Herpesvirus 1, Suid/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , RNA-Seq , Reactive Oxygen Species/metabolism , Receptor, EphB3/antagonists & inhibitors , Receptor, EphB3/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Signal Transduction , T-Lymphocytes/physiology , TOR Serine-Threonine Kinases/metabolism
4.
Curr Opin Immunol ; 70: 33-39, 2021 06.
Article En | MEDLINE | ID: mdl-33607496

Dendritic cells (DCs) are potent antigen-presenting cells (APCs), which sample the exogenous and endogenous cues to control adaptive immunity, balancing effector and regulatory components of the immune response. Multiple subsets of DCs, such as plasmacytoid and conventional DCs, have been defined based on specific phenotypic markers, functions and regulatory transcriptional programs. Tolerogenic DCs (tolDCs) have been functionally defined based on their ability to expand the regulatory T-cell compartment and suppress immune responses. However, it is still unclear whether tolDCs represent a homogeneous population, a specific DC subset and/or a heterogeneous collection of DC activation/maturation states. The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) has been shown to control transcriptional programs associated to tolDCs. In this review, we discuss the role of AHR in the control of tolDCs, and also AHR-targeted approaches for the therapeutic induction of tolDCs in autoimmune diseases and allergy.


Basic Helix-Loop-Helix Transcription Factors/immunology , Dendritic Cells/immunology , Receptors, Aryl Hydrocarbon/immunology , Autoimmune Diseases/immunology , Humans , Hypersensitivity/immunology , Signal Transduction/immunology
...