Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998107

ABSTRACT

During the periparturient period, cows undergo heightened energy demands at lactation onset, paired with reduced dry matter intake, leading to negative energy balance (NEB). Excessive lipolysis-driven adipose tissue remodeling, triggered by NEB, significantly contributes to ketosis in periparturient dairy cows. However, the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of ketosis and in modulating adipose tissue function remains poorly understood. Here, we investigated how ketosis affects the transcriptional profile and secretome of PBMCs and its influence on preadipocyte function in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Twenty-one postpartum Holstein dairy cows were categorized as either subclinical ketosis (SCK; BHB ≥ 1.0 mM) or control (CON; BHB < 0.8 mM) based on blood beta-hydroxybutyrate (BHB) concentration screening. Blood samples were collected intravenously for the isolation of PBMCs and serum metabolic profiling. Ketosis elevated circulating NEFA and BHB levels but reduced total WBC and neutrophil counts. Isolated PBMCs were evaluated for gene expression and used to produce conditioned media (PBMC-CM), during which PBMCs were stimulated with 10 ng/mL LPS. The overall phenotype of PBMCs was largely consistent between SCK and CON cows, with minimal differences detected in immunomodulatory cytokine expression and PBMC-CM composition following stimulation. Preadipocytes isolated from non-ketotic cows were treated with PBMC-CM to assess the effect of PBMC secretomes on adipose cell function. Preadipocytes treated with SCK PBMC-CM showed reduced lipid accumulation compared to those treated with CON PBMC-CM regardless of the depot. SAT preadipocytes had heightened expression of lipid metabolism-related genes, including DGAT1, LIPE, and FASN, compared to VAT when treated with SCK PBMC-CM. Preadipocytes treated with CM from PBMC stimulated by LPS exhibited upregulation in IL1B and IL6 regardless of the depot or source of PBMCs. Together, these results indicate that although PBMC profiles showed minimal differences, preadipocytes treated with PBMC-CM may be influenced by additional factors, leading to altered preadipocyte function and gene expression that may contribute to adipose cellular dysfunction.

2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673850

ABSTRACT

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Subject(s)
Isothiocyanates , NF-E2-Related Factor 2 , Quassins , Sulfoxides , Transcriptome , Animals , Cattle , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Isothiocyanates/pharmacology , Quassins/pharmacology , Sulfoxides/pharmacology , Transcriptome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Computer Simulation , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
3.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35953240

ABSTRACT

Spent hemp biomass (SHB), a byproduct of cannabinoid extraction from the production of industrial hemp has not been approved by FDA-CVM since its effects on animal health, performance, and product quality are unknown. Our objective was to investigate the effects of feeding two levels of SHB and a 4-wk withdrawal period on performance, carcass characteristic, meat quality, and hematological parameters in finishing lambs. A total of 35 weaned, Polypay male lambs kept in single pens were randomly assigned to five feeding treatments (n = 7) and fed diets containing either no SHB (CON) or SHB at 10% (LH1) or 20% (HH1) for 4 wk with 4 wk of clearing period from SHB, or SHB at 10% (LH2) or 20% (HH2) for 8 wk. Chemical analysis revealed SHB to have a nutritive quality similar to alfalfa with no mycotoxin, terpenes, or organic residuals as a result of the extraction process. Feed intake of lambs was negatively affected by 20% SHB in period 1 but not in period 2 where feed intake was the greatest in HH1 and LH2. In contrast, none of the performance data, including liveweight gains, were different across the groups and periods. In period 1, blood glucose, cholesterol, calcium, paraoxonase, and tocopherol were decreased by the level of SHB fed, while bilirubin and alkaline phosphatase (ALP) were increased. In period 2, the concentration in blood of urea, magnesium, bilirubin, ALP, and ferric reducing ability of the plasma (FRAP) were higher in LH2 and HH2 as compared with CON, while ß-hydroxybutyrate was lower in HH2. Blood parameters related to liver health, kidney function, immune status, and inflammation were unaffected by feeding SHB. Most carcass and meat quality parameters did not differ across feeding groups either. Except carcass purge loss and meat cook loss were larger in lambs that were fed 20% SHB. Although lower feed intake of lambs that were fed 20% SHB initially in period 1 suggested SHB was not palatable to the lambs, increased feed intake at a lower level of inclusion at 10% in period 2 may point to a positive long-term effect of feeding SHB.


The use of hemp by-products in livestock diets holds promise for reducing feed costs and achieving greater resource-use efficiency through integration of livestock production and rapidly growing hemp farming. Spent hemp biomass (SHB), the byproduct of the extraction process of cannabidiol from hemp can potentially be included in the ruminant diets due to its desirable nutritional properties. However, the potential accumulation of tetrahydrocannabinol­a psychotropic compound in animal tissues and its effect on animal health, production, and product quality are still unknown. Therefore, we conducted an indoor feeding study to investigate the effects of varying levels of SHB and a withdrawal period on feed intake, performance, health, and meat quality of lambs at Oregon State University. Our findings indicated that SHB can be included in lamb diets without causing any major detrimental effects on performance, meat quality, or health of the lambs.


Subject(s)
Cannabinoids , Cannabis , Sheep , Animals , Male , Animal Feed/analysis , 3-Hydroxybutyric Acid , Biomass , Calcium/analysis , Magnesium , Blood Glucose , Alkaline Phosphatase , Aryldialkylphosphatase , Meat/analysis , Diet/veterinary , Sheep, Domestic , Nutritive Value , Urea/analysis , Cholesterol , Tocopherols/analysis , Bilirubin/analysis , Cannabinoids/analysis , Terpenes
4.
Front Vet Sci ; 9: 931264, 2022.
Article in English | MEDLINE | ID: mdl-35903133

ABSTRACT

Metabolic challenges experienced by dairy cows during the transition between pregnancy and lactation (also known as peripartum), are of considerable interest from a nutrigenomic perspective. The mobilization of large amounts of non-esterified fatty acids (NEFA) leads to an increase in NEFA uptake in the liver, the excess of which can cause hepatic accumulation of lipids and ultimately fatty liver. Interestingly, peripartum NEFA activate the Peroxisome Proliferator-activated Receptor (PPAR), a transcriptional regulator with known nutrigenomic properties. The study of PPAR activation in the liver of periparturient dairy cows is thus crucial; however, current in vitro models of the bovine liver are inadequate, and the isolation of primary hepatocytes is time consuming, resource intensive, and prone to errors, with the resulting cells losing characteristic phenotypical traits within hours. The objective of the current study was to evaluate the use of precision-cut liver slices (PCLS) from liver biopsies as a model for PPAR activation in periparturient dairy cows. Three primiparous Jersey cows were enrolled in the experiment, and PCLS from each were prepared prepartum (-8.0 ± 3.6 DIM) and postpartum (+7.7± 1.2 DIM) and treated independently with a variety of PPAR agonists and antagonists: the PPARα agonist WY-14643 and antagonist GW-6471; the PPARδ agonist GW-50156 and antagonist GSK-3787; and the PPARγ agonist rosiglitazone and antagonist GW-9662. Gene expression was assayed through RT-qPCR and RNAseq, and intracellular triacylglycerol (TAG) concentration was measured. PCLS obtained from postpartum cows and treated with a PPARγ agonist displayed upregulation of ACADVL and LIPC while those treated with PPARδ agonist had increased expression of LIPC, PPARD, and PDK4. In PCLS from prepartum cows, transcription of LIPC was increased by all PPAR agonists and NEFA. TAG concentration tended to be larger in tissue slices treated with PPARδ agonist compared to CTR. Use of PPAR isotype-specific antagonists in PCLS cultivated in autologous blood serum failed to decrease expression of PPAR targets, except for PDK4, which was confirmed to be a PPARδ target. Transcriptome sequencing revealed considerable differences in response to PPAR agonists at a false discovery rate-adjusted p-value of 0.2, with the most notable effects exerted by the PPARδ and PPARγ agonists. Differentially expressed genes were mainly related to pathways involved with lipid metabolism and the immune response. Among differentially expressed genes, a subset of 91 genes were identified as novel putative PPAR targets in the bovine liver, by cross-referencing our results with a publicly available dataset of predicted PPAR target genes, and supplementing our findings with prior literature. Our results provide important insights on the use of PCLS as a model for assaying PPAR activation in the periparturient dairy cow.

SELECTION OF CITATIONS
SEARCH DETAIL