Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
PLoS Pathog ; 20(8): e1012495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39178317

ABSTRACT

There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei. Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver (tatC, ruvA, gmhB, wzxE, arcA). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen (xerC, prc, apaGH, atpG, aroC). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.


Subject(s)
Bacteremia , Genome, Bacterial , Animals , Bacteremia/microbiology , Mice , Mice, Inbred C57BL , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Bacterial Proteins/genetics , Female , Disease Models, Animal
2.
PLoS One ; 19(7): e0307968, 2024.
Article in English | MEDLINE | ID: mdl-39074102

ABSTRACT

The innate immune system eliminates bloodstream pathogens such as Escherichia coli in part through complement protein deposition and subsequent bacterial death (i.e., "serum killing"). Some E. coli strains have developed mechanisms to resist serum killing, though the extent of variation in serum killing among bloodstream infection (BSI) isolates and the clinical impact of this variation is not well understood. To address this issue, we developed a novel assay that uses flow cytometry to perform high throughput serum bactericidal assays (SBAs) with E. coli BSI isolates (n = 183) to define the proportion of surviving bacteria after exposure to serum. We further determined whether E. coli resistance to serum killing is associated with clinical outcomes (e.g., in-hospital attributable mortality, in-hospital total mortality, septic shock) and bacterial genotype in the corresponding patients with E. coli BSI. Our novel flow cytometry-based SBA performed similarly to a traditional SBA, though with significantly decreased hands-on bench work. Among E. coli BSI isolates, the mean proportion that survived exposure to 25% serum was 0.68 (Standard deviation 0.02, range 0.57-0.93). We did not identify associations between E. coli resistance to serum killing and clinical outcomes in our adjusted models. Together, this study describes a novel flow cytometry-based approach to the bacterial SBA that allowed for high-throughput testing of E. coli BSI isolates and identified high variability in resistance to serum killing among a large set of BSI isolates.


Subject(s)
Escherichia coli Infections , Escherichia coli , Flow Cytometry , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Bacteremia/microbiology , Bacteremia/immunology , Bacteremia/mortality , Blood Bactericidal Activity , Male , Female
3.
Gut Microbes ; 16(1): 2307586, 2024.
Article in English | MEDLINE | ID: mdl-38298161

ABSTRACT

The fungal microbiota plays an important role in the pathogenesis of alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). In this study, we aimed to compare changes of the fecal fungal microbiota between patients with ALD and NAFLD and to elucidate patterns in different disease stages between the two conditions. We analyzed fungal internal transcribed spacer 2 (ITS2) sequencing using fecal samples from a cohort of 48 patients with ALD, 78 patients with NAFLD, and 34 controls. The fungal microbiota differed significantly between ALD and NAFLD. The genera Saccharomyces, Kluyveromyces, Scopulariopsis, and the species Candida albicans (C. albicans), Malassezia restricta (M. restricta), Scopulariopsis cordiae (S. cordiae) were significantly increased in patients with ALD, whereas the genera Kazachstania and Mucor were significantly increased in the NAFLD cohort. We identified the fungal signature consisting of Scopulariopsis, Kluyveromyces, M. restricta, and Mucor to have the highest discriminative ability to detect ALD vs NAFLD with an area under the curve (AUC) of 0.93. When stratifying the ALD and NAFLD cohorts by fibrosis severity, the fungal signature with the highest AUC of 0.92 to distinguish ALD F0-F1 vs NAFLD F0-F1 comprised Scopulariopsis, Kluyveromyces, Mucor, M. restricta, and Kazachstania. For more advanced fibrosis stages (F2-F4), the fungal signature composed of Scopulariopsis, Kluyveromyces, Mucor, and M. restricta achieved the highest AUC of 0.99 to differentiate ALD from NAFLD. This is the first study to identify a fungal signature to differentiate two metabolic fatty liver diseases from each other, specifically ALD from NAFLD. This might have clinical utility in unclear cases and might hence help shape treatment approaches. However, larger studies are required to validate this fungal signature in other populations of ALD and NAFLD.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Mycobiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Liver Diseases, Alcoholic/pathology , Fibrosis , Liver/pathology , Liver Cirrhosis/pathology
4.
BMC Infect Dis ; 23(1): 556, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641085

ABSTRACT

BACKGROUND: Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS: Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS: The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION: Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.


Subject(s)
Colistin , Farmers , Humans , Animals , Swine , Colistin/pharmacology , Thailand/epidemiology , Escherichia coli , Genomics , Klebsiella
5.
J Clin Microbiol ; 61(7): e0019923, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37338371

ABSTRACT

Escherichia coli sequence type 131 (ST131) is a globally dominant multidrug-resistant clone, although its clinical impact on patients with bloodstream infection (BSI) is incompletely understood. This study aims to further define the risk factors, clinical outcomes, and bacterial genetics associated with ST131 BSI. A prospectively enrolled cohort study of adult inpatients with E. coli BSI was conducted from 2002 to 2015. Whole-genome sequencing was performed with the E. coli isolates. Of the 227 patients with E. coli BSI in this study, 88 (39%) were infected with ST131. Patients with E. coli ST131 BSI and those with non-ST131 BSI did not differ with respect to in-hospital mortality (17/82 [20%] versus 26/145 [18%]; P = 0.73). However, in patients with BSI from a urinary tract source, ST131 was associated with a numerically higher in-hospital mortality than patients with non-ST131 BSI (8/42 [19%] versus 4/63 [6%]; P = 0.06) and increased mortality in an adjusted analysis (odds ratio of 5.85; 95% confidence interval of 1.44 to 29.49; P = 0.02). Genomic analyses showed that ST131 isolates primarily had an H4:O25 serotype, had a higher number of prophages, and were associated with 11 flexible genomic islands as well as virulence genes involved in adhesion (papA, kpsM, yfcV, and iha), iron acquisition (iucC and iutA), and toxin production (usp and sat). In patients with E. coli BSI from a urinary tract source, ST131 was associated with increased mortality in an adjusted analysis and contained a distinct repertoire of genes influencing pathogenesis. These genes could contribute to the higher mortality observed in patients with ST131 BSI.


Subject(s)
Escherichia coli Infections , Sepsis , Urinary Tract Infections , Urinary Tract , Adult , Humans , Escherichia coli/genetics , Cohort Studies , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Anti-Bacterial Agents , beta-Lactamases/genetics
6.
Hepatology ; 77(6): 2073-2083, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36631002

ABSTRACT

BACKGROUND AND AIMS: The prevalence of alcohol use disorder (AUD) and metabolic dysfunction-associated fatty liver disease (MAFLD) are increasing worldwide, leading to the increasing likelihood of both etiologies contributing to a patient's liver disease. However, the effects of modest alcohol use in NAFLD are controversial and more studies are needed. We compared the intestinal viromes of patients with AUD and NAFLD in order to evaluate the effect of alcohol consumption on the intestinal viromes of NAFLD patients by extracting virus-like particles and performing metagenomic sequencing. APPROACH AND RESULTS: Viral nucleic acids were extracted from fecal samples and subjected to metagenomic sequencing. We demonstrate significant differences in the intestinal viromes of NAFLD and AUD patients, and that alcohol use in NAFLD patients reclassified to MAFLD accounted for significant differences in the intestinal viromes. The relative abundance of several Lactococcus phages was more similar between AUD patients and alcohol-consuming MAFLD patients than non-alcohol-consuming MAFLD patients and control subjects, and multivariate modeling using the most discriminating Lactococcus phages could better predict alcohol use in the MAFLD population than the alcohol-associated liver disease/NAFLD Index. Significant differences in the viral composition and diversity were also seen between MAFLD patients with low and moderate alcohol consumption compared with no alcohol consumption. CONCLUSIONS: The intestinal virome of MAFLD patients who consume low to moderate amounts of alcohol are significantly different from those who do not, and many features of the intestinal virome of alcohol-consuming MAFLD patients resemble that of AUD patients.


Subject(s)
Alcoholism , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Humans , Virome , Alcohol Drinking/adverse effects , Ethanol
7.
Hepatol Commun ; 7(2): e0029, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36706195

ABSTRACT

Chronic alcohol consumption is associated with intestinal fungal dysbiosis, yet we understand little about how alterations of intestinal fungi (mycobiota) contribute to the pathogenesis of alcohol-associated liver disease. By reanalyzing internal transcribed spacer 2 amplicon sequencing of fecal samples from a cohort of 66 patients with alcohol use disorder for presence (as opposed to relative abundance) of fungal species, we observed that the presence of Malassezia restricta was associated with increased markers of liver injury. M. restricta exacerbates ethanol-induced liver injury both in acute binge and chronic ethanol-feeding models in mice. Using bone marrow chimeric mice, we found that the disease exacerbating effect by M. restricta was mediated by C-type lectin domain family 4, member N on bone marrow-derived cells. M. restricta induces inflammatory cytokines and chemokines in Kupffer cells through C-type lectin domain family 4, member N signaling. Targeting fungal pathobionts might be a therapeutic strategy for alcohol-associated liver disease.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Liver Diseases, Alcoholic , Animals , Mice , Ethanol/adverse effects , Liver Diseases, Alcoholic/microbiology , Lectins, C-Type/genetics
8.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421303

ABSTRACT

Shigellosis is a leading global cause of diarrheal disease and travelers' diarrhea now being complicated by the dissemination of antibiotic resistance, necessitating the development of alternative antibacterials such as therapeutic bacteriophages (phages). Phages with lytic activity against Shigella strains were isolated from sewage. The genomes of 32 phages were sequenced, and based on genomic comparisons belong to seven taxonomic genera: Teetrevirus, Teseptimavirus, Kayfunavirus, Tequatrovirus, Mooglevirus, Mosigvirus and Hanrivervirus. Phage host ranges were determined with a diverse panel of 95 clinical isolates of Shigella from Southeast Asia and other geographic regions, representing different species and serotypes. Three-phage mixtures were designed, with one possessing lytic activity against 89% of the strain panel. This cocktail exhibited lytic activity against 100% of S. sonnei isolates, 97.2% of S. flexneri (multiple serotypes) and 100% of S. dysenteriae serotypes 1 and 2. Another 3-phage cocktail composed of two myophages and one podophage showed both a broad host range and the ability to completely sterilize liquid culture of a model virulent strain S. flexneri 2457T. In a Galleria mellonella model of lethal infection with S. flexneri 2457T, this 3-phage cocktail provided a significant increase in survival.

9.
JAC Antimicrob Resist ; 4(3): dlac040, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35529051

ABSTRACT

Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.

10.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35458437

ABSTRACT

Providencia rettgeri is an emerging opportunistic Gram-negative pathogen with reports of increasing antibiotic resistance. Pan-drug resistant (PDR) P. rettgeri infections are a growing concern, demonstrating a need for the development of alternative treatment options which is fueling a renewed interest in bacteriophage (phage) therapy. Here, we identify and characterize phage vB_PreP_EPr2 (EPr2) with lytic activity against PDR P. rettgeri MRSN 845308, a clinical isolate that carries multiple antibiotic resistance genes. EPr2 was isolated from an environmental water sample and belongs to the family Autographiviridae, subfamily Studiervirinae and genus Kayfunavirus, with a genome size of 41,261 base pairs. Additional phenotypic characterization showed an optimal MOI of 1 and a burst size of 12.3 ± 3.4 PFU per bacterium. EPr2 was determined to have a narrow host range against a panel of clinical P. rettgeri strains. Despite this fact, EPr2 is a promising lytic phage with potential for use as an alternative therapeutic for treatment of PDR P. rettgeri infections.


Subject(s)
Bacteriophages , Anti-Bacterial Agents , Host Specificity , Providencia/genetics
11.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435707

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , United States , beta-Lactamases/metabolism
12.
Hepatol Commun ; 6(8): 2058-2069, 2022 08.
Article in English | MEDLINE | ID: mdl-35368152

ABSTRACT

Alcohol use is a leading cause of chronic liver disease worldwide, and changes in the microbiome associated with alcohol use contribute to patients' risk for liver disease progression. Less is known about the effects of alcohol use on the intestinal viral microbiome (virome) and interactions between bacteriophages and their target bacteria. We studied changes in the intestinal virome of 62 clinically well-characterized patients with alcohol use disorder (AUD) during active alcohol use and after 2 weeks of alcohol abstinence, by extracting virus-like particles and performing metagenomic sequencing. We observed decreased abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages in patients with active AUD when compared with controls, whereas after 2 weeks of alcohol abstinence, patients with AUD demonstrated an increase in the abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages. The intestinal virome signature was also significantly different in patients with AUD with progressive liver disease, with increased abundance of phages targeting Enterobacteria and Lactococcus species phages compared with patients with AUD with nonprogressive liver disease. By performing moderation analyses, we found that progressive liver disease is associated with changes in interactions between some bacteriophages and their respective target bacteria. In summary, active alcohol use and alcohol-associated progressive liver disease are associated with changes in the fecal virome, some of which are partially reversible after a short period of abstinence. Progression of alcohol-associated liver disease is associated with changes in bacteriophage-bacteria interactions.


Subject(s)
Alcoholism , Bacteriophages , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Bacteria/genetics , Bacteriophages/genetics , Humans , Intestines , Metagenomics , Virome
13.
Metabolites ; 12(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35050163

ABSTRACT

Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score.

14.
Appl Environ Microbiol ; 88(3): e0148621, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818102

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections and food poisoning in humans with antibiotic resistance, specifically to methicillin, compounding the problem. Bacteriophages (phages) provide an alternative treatment strategy, but these only infect a limited number of circulating strains and may quickly become ineffective due to bacterial resistance. To overcome these obstacles, engineered phages have been proposed, but new methods are needed for the efficient transformation of large DNA molecules into S. aureus to "boot-up" (i.e., rescue) infectious phages. We presented a new, efficient, and reproducible DNA transformation method, NEST (non-electroporation Staphylococcus transformation), for S. aureus to boot-up purified phage genomic DNA (at least 150 kb in length) and whole yeast-assembled synthetic phage genomes. This method was a powerful new tool for the transformation of DNA in S. aureus and will enable the rapid development of engineered therapeutic phages and phage cocktails against Gram-positive pathogens. IMPORTANCE The continued emergence of antibiotic-resistant bacterial pathogens has heightened the urgency for alternative antibacterial strategies. Phages provide an alternative treatment strategy but are difficult to optimize. Synthetic biology approaches have been successfully used to construct and rescue genomes of model phages but only in a limited number of highly transformable host species. In this study, we used a new, reproducible, and efficient transformation method to reconstitute a functional nonmodel Siphophage from a constructed synthetic genome. This method will facilitate the engineering of Staphylococcus and Enterococcus phages for therapeutic applications and the engineering of Staphylococcus strains by enabling transformation of higher molecular weight DNA to introduce more complex modifications.


Subject(s)
Staphylococcus Phages , Staphylococcus aureus , DNA, Viral/genetics , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/virology , Staphylococcus Phages/genetics , Staphylococcus aureus/virology
15.
J Hepatol ; 76(4): 788-799, 2022 04.
Article in English | MEDLINE | ID: mdl-34896404

ABSTRACT

BACKGROUND & AIMS: Studies investigating the gut-liver axis have largely focused on bacteria, whereas little is known about commensal fungi. We characterized fecal fungi in patients with non-alcoholic fatty liver disease (NAFLD) and investigated their role in a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis. METHODS: We performed fungal internal transcribed spacer 2 sequencing using fecal samples from 78 patients with NAFLD, 16 controls and 73 patients with alcohol use disorder. Anti-Candida albicans (C. albicans) IgG was measured in blood samples from 17 controls and 79 patients with NAFLD. Songbird, a novel multinominal regression tool, was used to investigate mycobiome changes. Germ-free mice were colonized with feces from patients with non-alcoholic steatohepatitis (NASH), fed a Western diet for 20 weeks and treated with the antifungal amphotericin B. RESULTS: The presence of non-obese NASH or F2-F4 fibrosis was associated with a distinct fecal mycobiome signature. Changes were characterized by an increased log-ratio for Mucor sp./Saccharomyces cerevisiae (S. cerevisiae) in patients with NASH and F2-F4 fibrosis. The C. albicans/S. cerevisiae log-ratio was significantly higher in non-obese patients with NASH when compared with non-obese patients with NAFL or controls. We observed a different fecal mycobiome composition in patients with NAFLD and advanced fibrosis compared to those with alcohol use disorder and advanced fibrosis. Plasma anti-C. albicans IgG was increased in patients with NAFLD and advanced fibrosis. Gnotobiotic mice, colonized with human NASH feces and treated with amphotericin B were protected from Western diet-induced steatohepatitis. CONCLUSIONS: Non-obese patients with NAFLD and more advanced disease have a different fecal mycobiome composition to those with mild disease. Antifungal treatment ameliorates diet-induced steatohepatitis in mice. Intestinal fungi could be an attractive target to attenuate NASH. LAY SUMMARY: Non-alcoholic fatty liver disease is one of the most common chronic liver diseases and is associated with changes in the fecal bacterial microbiome. We show that patients with non-alcoholic fatty liver disease and more severe disease stages have a specific composition of fecal fungi and an increased systemic immune response to Candida albicans. In a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis, we show that treatment with antifungals reduces liver damage.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Non-alcoholic Fatty Liver Disease , Animals , Feces/microbiology , Humans , Liver , Mice , Non-alcoholic Fatty Liver Disease/etiology , Saccharomyces cerevisiae
16.
J Hepatol ; 75(6): 1465-1475, 2021 12.
Article in English | MEDLINE | ID: mdl-34437908

ABSTRACT

Humans harbour a large quantity of microbes in the intestinal tract and have evolved symbiotic relationships with many of them. However, several specific bacterial pathobionts are associated with liver disease pathogenesis. Although bacteriophages (phages) and eukaryotic viruses (collectively known as "the virome") outnumber bacteria and fungi in the intestine, little is known about the intestinal virome in patients with liver disease. As natural predators of bacteria, phages can precisely edit the bacterial microbiota. Hence, there is interest in using them to target bacterial pathobionts in several diseases, including those of the liver. Herein, we will summarise changes in the faecal virome associated with fatty liver diseases and cirrhosis, and describe the therapeutic potential of phages and potential challenges to their clinical application.


Subject(s)
Bacteriophages/metabolism , Gastrointestinal Tract/metabolism , Liver Diseases/drug therapy , Virome/physiology , Bacteriophages/pathogenicity , Gastrointestinal Tract/drug effects , Humans , Liver Diseases/physiopathology , Virome/drug effects , Virome/immunology
17.
Front Physiol ; 12: 699253, 2021.
Article in English | MEDLINE | ID: mdl-34349667

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is an important cause of morbidity and mortality worldwide. The intestinal microbiota is involved in the development and progression of ALD; however, little is known about commensal fungi therein. METHODS: We studied the dynamic changes of the intestinal fungal microbiome, or mycobiome, in 66 patients with alcohol use disorder (AUD) and after 2 weeks of alcohol abstinence using internal transcribed spacer 2 (ITS2) amplicon sequencing of fecal samples. RESULTS: Patients with AUD had significantly increased abundance of the genera Candida, Debaryomyces, Pichia, Kluyveromyces, and Issatchenkia, and of the species Candida albicans and Candida zeylanoides compared with control subjects. Significantly improved liver health markers caspase-cleaved and intact cytokeratin 18 (CK18-M65) levels and controlled attenuation parameter (CAP) in AUD patients after 2 weeks of alcohol abstinence were associated with significantly lower abundance of the genera Candida, Malassezia, Pichia, Kluyveromyces, Issatchenkia, and the species C. albicans and C. zeylanoides. This was mirrored by significantly higher specific anti-C. albicans immunoglobulin G (IgG) and M (IgM) serum levels in AUD patients in relation to control participants, and significantly decreased anti-C. albicans IgG levels in AUD subjects after 2 weeks of abstinence. The intestinal abundance of the genus Malassezia was significantly higher in AUD subjects with progressive liver disease compared with non-progressive liver disease. CONCLUSION: In conclusion, improved liver health in AUD patients after alcohol abstinence was associated with lower intestinal abundances of Candida and Malassezia, and lower serum anti-C. albicans IgG levels. Intestinal fungi might serve as a therapeutic target to improve the outcome of patients in ALD.

18.
J Antimicrob Chemother ; 76(8): 2017-2023, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33942093

ABSTRACT

BACKGROUND: Recent studies indicated that the monosubstituted deoxystreptamine aminoglycoside apramycin is a potent antibiotic against a wide range of MDR Gram-negative pathogens. OBJECTIVES: To evaluate the in vitro activity of apramycin against carbapenem-resistant Klebsiella pneumoniae (CRKp) isolates from New York and New Jersey, and to explore mechanisms of apramycin resistance. METHODS: Apramycin MICs were determined by broth microdilution for 155 CRKp bloodstream isolates collected from 2013 to 2018. MLST STs, wzi capsular types and apramycin resistance gene aac(3')-IV were examined by PCR and Sanger sequencing. Selected isolates were further characterized by conjugation experiments and WGS. RESULTS: Apramycin MIC50/90 values were 8 and >128 mg/L for CRKp isolates, which are much higher than previously reported. Twenty-four isolates (15.5%) were apramycin resistant (MIC ≥64 mg/L) and they were all from the K. pneumoniae ST258 background. The 24 apramycin-resistant K. pneumoniae ST258 strains belonged to six different capsular types and 91.7% of them harboured the apramycin resistance gene aac(3')-IV. Sequencing analysis showed that different ST258 capsular type strains shared a common non-conjugative IncR plasmid, co-harbouring aac(3')-IV and blaKPC. A novel IncR and IncX3 cointegrate plasmid, p59494-RX116.1, was also identified in an ST258 strain, demonstrating how apramycin resistance can be spread from a non-conjugative plasmid through cointegration. CONCLUSIONS: We described a high apramycin resistance rate in clinical CRKp isolates in the New York/New Jersey region, mainly among the epidemic K. pneumoniae ST258 strains. The high resistance rate in an epidemic K. pneumoniae clone raises concern regarding the further optimization and development of apramycin and apramycin-like antibiotics.


Subject(s)
Epidemics , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Carbapenems , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Multilocus Sequence Typing , Nebramycin/analogs & derivatives
19.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923801

ABSTRACT

The siderophore-antibiotic conjugate LCB10-0200 (a.k.a. GT-1) has been developed to combat multidrug-resistant Gram-negative bacteria. In this study, the in vitro activity of LCB10-0200 and LCB10-0200/avibactam (AVI) has been investigated against carbapenem-resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Minimal inhibitory concentrations (MICs) of LCB10-0200, LCB10-0200/AVI, aztreonam, aztreonam/AVI, ceftazidime, ceftazidime/AVI, and meropenem were measured using the agar dilution method. Whole genome sequencing was performed using Illumina and the resistome was analyzed. LCB10-0200 displayed stronger activity than the comparator drugs in meropenem-resistant E. coli and K. pneumoniae, and the addition of AVI enhanced the LCB10-0200 activity to MIC ≤ 0.12 mg/L for 90.5% of isolates. In contrast, whereas LCB10-0200 alone showed potent activity against meropenem-resistant A. baumannii and P. aeruginosa at MIC ≤ 4 mg/L for 84.3% of isolates, the combination with AVI did not improve its activity. LCB10-0200/AVI was active against CTX-M-, SHV-, CMY-, and KPC- producing E. coli and K. pneumoniae, while LCB10-0200 alone was active against ADC-, OXA-, and VIM- producing A. baumannii and P. aeruginosa. Both LCB10-0200 and LCB10-0200/AVI displayed low activity against IMP- and NDM- producing strains. LCB10-0200 alone exhibited strong activity against selected strains. The addition of AVI significantly increased LCB10-0200 activity against carbapenem-resistant E. coli, K. pneumoniae.

20.
Cell Mol Gastroenterol Hepatol ; 12(1): 293-320, 2021.
Article in English | MEDLINE | ID: mdl-33631374

ABSTRACT

BACKGROUND & AIMS: Fucosyltransferase 2 (Fut2)-mediated intestinal α1- 2-fucosylation is important for host-microbe interactions and has been associated with several diseases, but its role in obesity and hepatic steatohepatitis is not known. The aim of this study was to investigate the role of Fut2 in a Western-style diet-induced mouse model of obesity and steatohepatitis. METHODS: Wild-type (WT) and Fut2-deficient littermate mice were used and features of the metabolic syndrome and steatohepatitis were assessed after 20 weeks of Western diet feeding. RESULTS: Intestinal α1-2-fucosylation was suppressed in WT mice after Western diet feeding, and supplementation of α1-2-fucosylated glycans exacerbated obesity and steatohepatitis in these mice. Fut2-deficient mice were protected from Western diet-induced features of obesity and steatohepatitis despite an increased caloric intake. These mice have increased energy expenditure and thermogenesis, as evidenced by a higher core body temperature. Protection from obesity and steatohepatitis associated with Fut2 deficiency is transmissible to WT mice via microbiota exchange; phenotypic differences between Western diet-fed WT and Fut2-deficient mice were reduced with antibiotic treatment. Fut2 deficiency attenuated diet-induced bile acid accumulation by altered relative abundance of bacterial enzyme 7-α-hydroxysteroid dehydrogenases metabolizing bile acids and by increased fecal excretion of secondary bile acids. This also was associated with increased intestinal farnesoid X receptor/fibroblast growth factor 15 signaling, which inhibits hepatic synthesis of bile acids. Dietary supplementation of α1-2-fucosylated glycans abrogates the protective effects of Fut2 deficiency. CONCLUSIONS: α1-2-fucosylation is an important host-derived regulator of intestinal microbiota and plays an important role for the pathogenesis of obesity and steatohepatitis in mice.


Subject(s)
Fatty Liver/metabolism , Fucosyltransferases/metabolism , Intestines/enzymology , Obesity/metabolism , Animals , Diet , Fatty Liver/chemically induced , Fucosyltransferases/deficiency , Intestines/microbiology , Mice , Mice, Knockout , Obesity/chemically induced , Galactoside 2-alpha-L-fucosyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL