Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38323924

ABSTRACT

Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.


Subject(s)
Actins , Pseudopodia , Actins/metabolism , Pseudopodia/metabolism , Carrier Proteins/metabolism , Neurons/metabolism , Formins/metabolism
2.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-29208644

ABSTRACT

The actin cytoskeleton comprises many different architectures of filaments, including branched networks, parallel bundles and antiparallel fibers. A current challenge is to elucidate how the diverse array of actin regulators, which controls the growth, assembly and turnover of actin filaments, is used to orchestrate cytoskeletal organization and in turn cell shape and movement. Long observed to assemble at cell membranes, actin in Xenopus egg extracts recapitulates membrane-triggered assembly at specific lipid and membrane environments. The use of Xenopus egg extracts has contributed greatly to identifying how constitutively autoinhibited regulatory pathways are activated, which converge on activation of the Arp2/3 complex. Here we describe a protocol for making parallel actin bundles using Xenopus egg extracts from supernatants prepared by high-speed centrifugation. These filopodia-like actin bundles emanate from clusters of actin regulators that self-assemble at phosphatidylinositol (4,5)-bisphosphate-containing supported lipid bilayers. Forming a plasma membrane-mimicking bilayer on glass allows easy, optimizable, high signal-to-noise microscopy at high spatial and temporal resolution. The use of Xenopus egg extracts yields large quantities of active material that can be flexibly tailored to address specific questions, for example, by dilution, addition of fluorescent proteins, antibodies or protein fragments, immunodepletion, addition of small molecule inhibitors, or biochemical fractionation.


Subject(s)
Actins/isolation & purification , Actins/metabolism , Cell Extracts/isolation & purification , Oocytes/chemistry , Protein Multimerization , Pseudopodia/chemistry , Xenopus , Animals , Lipid Bilayers/metabolism , Microscopy , Phosphatidylinositol 4,5-Diphosphate/metabolism
3.
J Biol Chem ; 291(26): 13875-90, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27129201

ABSTRACT

Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.


Subject(s)
Carrier Proteins/chemistry , Monomeric GTP-Binding Proteins/chemistry , Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry , Xenopus Proteins/chemistry , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Fatty Acid-Binding Proteins , Humans , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Protein Binding , Protein Domains , Protein Structure, Quaternary , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...