Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36146555

ABSTRACT

Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.

2.
J Infect Dis ; 226(10): 1712-1716, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35714328

ABSTRACT

The SARS-CoV-2 Omicron variant has caused infections among individuals vaccinated or with prior COVID-19, suggesting immune escape. Here, we showed a decrease in binding and surrogate neutralizing antibody responses to the Omicron variant after 2 doses of the Pfizer COVID-19 mRNA vaccine. Individuals recovered from infection before vaccination had higher antibody levels and avidity to the Omicron variant compared to individuals vaccinated without infection. This suggested that COVID-19 infection before vaccination elicited a higher magnitude and affinity antibody response to the Omicron variant, and repeated exposure through infection or vaccine may be required to improve immunity to emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Antibody Affinity , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Vaccination , Antibodies, Neutralizing , mRNA Vaccines
3.
Sci Rep ; 12(1): 6496, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444221

ABSTRACT

SARS-CoV-2 is a novel betacoronavirus that caused coronavirus disease 2019 and has resulted in millions of deaths worldwide. Novel coronavirus infections in humans have steadily become more common. Understanding antibody responses to SARS-CoV-2, and identifying conserved, cross-reactive epitopes among coronavirus strains could inform the design of vaccines and therapeutics with broad application. Here, we determined that individuals with previous SARS-CoV-2 infection or vaccinated with the Pfizer-BioNTech BNT162b2 vaccine produced antibody responses that cross-reacted with related betacoronaviruses. Moreover, we designed a peptide-conjugate vaccine with a conserved SARS-CoV-2 S2 spike epitope, immunized mice and determined cross-reactive antibody binding to SARS-CoV-2 and other related coronaviruses. This conserved spike epitope also shared sequence homology to proteins in commensal gut microbiota and could prime immune responses in humans. Thus, SARS-CoV-2 conserved epitopes elicit cross-reactive immune responses to both related coronaviruses and host bacteria that could serve as future targets for broad coronavirus therapeutics and vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Epitopes , Humans , Mice , SARS-CoV-2 , Vaccination
4.
Clin Infect Dis ; 75(1): e902-e904, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34551091

ABSTRACT

Determining the duration of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical for informing the timing of booster immunization. Many genetic and environmental factors could influence both the magnitude and persistence of the antibody response. Here, we showed that SARS-CoV-2 infection before vaccination and age affected the decay of antibody responses to the SARS-CoV-2 messenger RNA vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
5.
Sci Adv ; 7(38): eabf2073, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533985

ABSTRACT

There is growing evidence that prenatal immune activation contributes to neuropsychiatric disorders. Here, we show that early postnatal immune activation resulted in profound impairments in social behavior, including in social memory in adult male mice heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/−), a genetic disorder with high prevalence of autism. Early postnatal immune activation did not affect either wild-type or female Tsc2+/− mice. We demonstrate that these memory deficits are caused by abnormal mammalian target of rapamycin­dependent interferon signaling and impairments in microglia function. By mining the medical records of more than 3 million children followed from birth, we show that the prevalence of hospitalizations due to infections in males (but not in females) is associated with future development of autism spectrum disorders (ASD). Together, our results suggest the importance of synergistic interactions between strong early postnatal immune activation and mutations associated with ASD.

6.
BMC Med ; 19(1): 169, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34304742

ABSTRACT

BACKGROUND: The global pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with the SARS-CoV-2 virus. Currently, there are three approved vaccines against SARS-CoV-2 in the USA, including two based on messenger RNA (mRNA) technology that has demonstrated high vaccine efficacy. We sought to characterize humoral immune responses, at high resolution, during immunization with the BNT162b2 (Pfizer-BioNTech) vaccine in individuals with or without prior history of natural SARS-CoV-2 infection. METHODS: We determined antibody responses after each dose of the BNT162b2 SARS-CoV-2 vaccine in individuals who had no prior history of SARS-CoV-2 infection (seronegative) and individuals that had previous viral infection 30-60 days prior to first vaccination (seropositive). To do this, we used both an antibody isotype-specific multiplexed bead-based binding assays targeting multiple SARS-CoV-2 viral protein antigens and an assay that identified potential SARS-CoV-2 neutralizing antibody levels. Moreover, we mapped antibody epitope specificity after immunization using SARS-CoV-2 spike protein peptide arrays. RESULTS: Antibody levels were significantly higher after a single dose in seropositive individuals compared to seronegative individuals and were comparable to levels observed in seronegative individuals after two doses. While IgG was boosted by vaccination for both seronegative and seropositive individuals, only seronegative individuals had increased IgA or IgM antibody titers after primary immunization. We identified immunodominant peptides targeted on both SARS-CoV-2 spike S1 and S2 subunits after vaccination. CONCLUSION: These findings demonstrated the antibody responses to SARS-CoV-2 immunization in seropositive and seronegative individuals and provide support for the concept of using prior infection history as a guide for the consideration of future vaccination regimens. Moreover, we identified key epitopes on the SARS-CoV-2 spike protein that are targeted by antibodies after vaccination that could guide future vaccine and immune correlate development.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines/immunology , Child , Female , Humans , Middle Aged , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
10.
Neuron ; 73(3): 537-52, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22325205

ABSTRACT

Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysis on microarray data from singing zebra finches to discover gene ensembles regulated during vocal behavior. We found ∼2,000 singing-regulated genes comprising three coexpression groups unique to area X, the basal ganglia subregion dedicated to learned vocalizations. These contained known targets of human FOXP2 and potential avian targets. We validated biological pathways not previously implicated in vocalization. Higher-order gene coexpression patterns, rather than expression levels, molecularly distinguish area X from the ventral striato-pallidum during singing. The previously unknown structure of singing-driven networks enables prioritization of molecular interactors that probably bear on human motor disorders, especially those affecting speech.


Subject(s)
Basal Ganglia/anatomy & histology , Basal Ganglia/physiology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation/physiology , Vocalization, Animal , Animals , Computational Biology , ELAV Proteins/genetics , ELAV Proteins/metabolism , Female , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways/physiology , Oligonucleotide Array Sequence Analysis/methods , Phosphopyruvate Hydratase/metabolism , Songbirds
11.
Plant Physiol ; 154(3): 1381-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20833727

ABSTRACT

Gunnera plants have the unique ability to form endosymbioses with N(2)-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc's ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N(2)-fixing vegetative state.


Subject(s)
Carbohydrate Metabolism , Magnoliopsida/microbiology , Nostoc/metabolism , Symbiosis , Fructose/metabolism , Glucose/metabolism , Magnoliopsida/genetics , Magnoliopsida/metabolism , RNA, Plant/genetics , Seedlings/genetics , Seedlings/metabolism , Seedlings/microbiology , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...