Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
2.
BMC Med Genomics ; 17(1): 186, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010058

ABSTRACT

BACKGROUND: The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS: We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION: We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.


Subject(s)
Gene Regulatory Networks , Genetic Predisposition to Disease , Genome-Wide Association Study , Neoplasms , Humans , Neoplasms/genetics , Organ Specificity/genetics , Gene Expression Regulation, Neoplastic , Genetic Loci
3.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951643

ABSTRACT

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Subject(s)
Gene Frequency , Menarche , Puberty , Humans , Female , Menarche/genetics , Puberty/genetics , Animals , Multifactorial Inheritance/genetics , Mice , Genome-Wide Association Study , Adolescent , Puberty, Precocious/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , Puberty, Delayed/genetics , Child
4.
iScience ; 27(6): 109981, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868191

ABSTRACT

Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).

5.
Cell Rep ; 43(7): 114247, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38907996

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.

6.
Circ Genom Precis Med ; 17(3): e004374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752343

ABSTRACT

BACKGROUND: The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS: For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS: Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS: Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.


Subject(s)
Single-Cell Analysis , Humans , Male , Female , Middle Aged , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/genetics , ST Elevation Myocardial Infarction/blood , Aged , Monocytes/immunology , Monocytes/metabolism , Biomarkers/blood , Myocardial Infarction/immunology , Myocardial Infarction/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Case-Control Studies
7.
Nat Med ; 30(6): 1696-1710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773340

ABSTRACT

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.


Subject(s)
Acute Coronary Syndrome , Humans , Female , Acute Coronary Syndrome/immunology , Male , Middle Aged , Aged , Chronic Disease , Monocytes/immunology , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Inflammation/immunology
8.
Genome Biol ; 25(1): 94, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622708

ABSTRACT

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Subject(s)
Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods
9.
Nature ; 628(8006): 130-138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448586

ABSTRACT

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Subject(s)
Biomarkers , Genome-Wide Association Study , Metabolomics , Female , Humans , Pregnancy , Acetone/blood , Acetone/metabolism , Biomarkers/blood , Biomarkers/metabolism , Cholestasis, Intrahepatic/blood , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Cohort Studies , Genome-Wide Association Study/methods , Hypertension/blood , Hypertension/genetics , Hypertension/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Mendelian Randomization Analysis , Metabolic Networks and Pathways/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Pregnancy Complications/blood , Pregnancy Complications/genetics , Pregnancy Complications/metabolism
10.
Article in English | MEDLINE | ID: mdl-38305578

ABSTRACT

Longevity and disease-free survival are influenced by a combination of genetics and lifestyle. Biological age (BioAge), a measure of aging based on composite biomarkers, may outperform chronological age in predicting health and longevity. This study investigated the relationship between genetic risks, lifestyle factors, and delta age (Δage), estimated as the difference between biological and chronological age. BioAge and Δage were calculated for 52 418 participants from the population-based Lifelines cohort. We computed 2 independent polygenic risk scores (PRS) for health span and DNA methylation-based aging clock to characterize genetic risks. The capacity of BioAge to predict all-cause mortality when adjusted for chronological age and genetic risks for aging, was assessed. Obesity, lifestyle, socioeconomic status, sex, and genetic variations in a population contributed to the differences in the rates of accelerated aging. The overall risk of death for a 1-year increase in BioAge for a given chronological age and sex among the genotyped participants was 11% (HR = 1.11; 95% CI: 1.09, 1.13). After adjusting for genetic factors, BioAge maintained its sensitivity for predicting mortality. Findings from this study ascertain that BioAge can be a useful tool for risk stratification in research and aging interventions.


Subject(s)
Aging , Longevity , Humans , Aging/genetics , Longevity/genetics , DNA Methylation , Risk Factors , Biomarkers , Epigenesis, Genetic
11.
Genome Biol ; 25(1): 29, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254182

ABSTRACT

Expression quantitative trait loci (eQTL) offer insights into the regulatory mechanisms of trait-associated variants, but their effects often rely on contexts that are unknown or unmeasured. We introduce PICALO, a method for hidden variable inference of eQTL contexts. PICALO identifies and disentangles technical from biological context in heterogeneous blood and brain bulk eQTL datasets. These contexts are biologically informative and reproducible, outperforming cell counts or expression-based principal components. Furthermore, we show that RNA quality and cell type proportions interact with thousands of eQTLs. Knowledge of hidden eQTL contexts may aid in the inference of functional mechanisms underlying disease variants.


Subject(s)
Brain , Quantitative Trait Loci , Cell Count , Principal Component Analysis , Phenotype
12.
medRxiv ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37503126

ABSTRACT

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

13.
Database (Oxford) ; 20232023 04 26.
Article in English | MEDLINE | ID: mdl-37114804

ABSTRACT

The mapping of human-entered data to codified data formats that can be analysed is a common problem across medical research and health care. To identify risk and protective factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and coronavirus disease 2019 (COVID-19) severity, frequent questionnaires were sent out to participants of the Lifelines Cohort Study starting 30 March 2020. Because specific drugs were suspected COVID-19 risk factors, the questionnaires contained multiple-choice questions about commonly used drugs and open-ended questions to capture all other drugs used. To classify and evaluate the effects of those drugs and group participants taking similar drugs, the free-text answers needed to be translated into standard Anatomical Therapeutic Chemical (ATC) codes. This translation includes handling misspelt drug names, brand names, comments or multiple drugs listed in one line that would prevent a computer from finding these terms in a simple lookup table. In the past, the translation of free-text responses to ATC codes was time-intensive manual labour for experts. To reduce the amount of manual curation required, we developed a method for the semi-automated recoding of the free-text questionnaire responses into ATC codes suitable for further analysis. For this purpose, we built an ontology containing the Dutch drug names linked to their respective ATC code(s). In addition, we designed a semi-automated process that builds upon the Molgenis method SORTA to map the responses to ATC codes. This method can be applied to support the encoding of free-text responses to facilitate the evaluation, categorization and filtering of free-text responses. Our semi-automatic approach to coding of drugs using SORTA turned out to be more than two times faster than current manual approaches to performing this activity. Database URL https://doi.org/10.1093/database/baad019.


Subject(s)
COVID-19 , Humans , Cohort Studies , COVID-19/epidemiology , SARS-CoV-2 , Surveys and Questionnaires , Databases, Factual
14.
Genome Biol ; 24(1): 80, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072791

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS: We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION: Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.


Subject(s)
Autoimmune Diseases , Leukocytes, Mononuclear , Humans , Gene Expression Regulation , Quantitative Trait Loci , Ribosomal Proteins/genetics , Autoimmune Diseases/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study
15.
Front Immunol ; 14: 1069379, 2023.
Article in English | MEDLINE | ID: mdl-36865558

ABSTRACT

Both gene expression and protein concentrations are regulated by genetic variants. Exploring the regulation of both eQTLs and pQTLs simultaneously in a context- and cell-type dependent manner may help to unravel mechanistic basis for genetic regulation of pQTLs. Here, we performed meta-analysis of Candida albicans-induced pQTLs from two population-based cohorts and intersected the results with Candida-induced cell-type specific expression association data (eQTL). This revealed systematic differences between the pQTLs and eQTL, where only 35% of the pQTLs significantly correlated with mRNA expressions at single cell level, indicating the limitation of eQTLs use as a proxy for pQTLs. By taking advantage of the tightly co-regulated pattern of the proteins, we also identified SNPs affecting protein network upon Candida stimulations. Colocalization of pQTLs and eQTLs signals implicated several genomic loci including MMP-1 and AMZ1. Analysis of Candida-induced single cell gene expression data implicated specific cell types that exhibit significant expression QTLs upon stimulation. By highlighting the role of trans-regulatory networks in determining the abundance of secretory proteins, our study serve as a framework to gain insights into the mechanisms of genetic regulation of protein levels in a context-dependent manner.


Subject(s)
Candida albicans , Candida , Candida albicans/genetics , Inflammation , Quantitative Trait Loci , Gene Expression
16.
Nat Commun ; 14(1): 1271, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882394

ABSTRACT

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.


Subject(s)
Otters , Animals , Multifactorial Inheritance , Risk Factors , Sample Size , Transcriptome
17.
medRxiv ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36993312

ABSTRACT

Human genetic variation has enabled the identification of several key regulators of fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances. However, despite the progress made, limited further insights have been obtained to provide a fuller accounting of how genetic variation contributes to the global mechanisms of fetal hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide association study of 28,279 individuals from several cohorts spanning 5 continents to define the architecture of human genetic variation impacting HbF. We have identified a total of 178 conditionally independent genome-wide significant or suggestive variants across 14 genomic windows. Importantly, these new data enable us to better define the mechanisms by which HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new genetically-nominated regulator of hemoglobin switching. We define putative causal variants and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the complex variant-driven regulation present at these loci. We additionally show how rare large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF levels. Our study paves the way for the next generation of therapies to more effectively induce HbF in sickle cell disease and ß-thalassemia.

18.
Nat Commun ; 14(1): 544, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36725846

ABSTRACT

Immune cell function can be altered by lipids in circulation, a process potentially relevant to lipid-associated inflammatory diseases including atherosclerosis and rheumatoid arthritis. To gain further insight in the molecular changes involved, we here perform a transcriptome-wide association analysis of blood triglycerides, HDL cholesterol, and LDL cholesterol in 3229 individuals, followed by a systematic bidirectional Mendelian randomization analysis to assess the direction of effects and control for pleiotropy. Triglycerides are found to induce transcriptional changes in 55 genes and HDL cholesterol in 5 genes. The function and cell-specific expression pattern of these genes implies that triglycerides downregulate both cellular lipid metabolism and, unexpectedly, allergic response. Indeed, a Mendelian randomization approach based on GWAS summary statistics indicates that several of these genes, including interleukin-4 (IL4) and IgE receptors (FCER1A, MS4A2), affect the incidence of allergic diseases. Our findings highlight the interplay between triglycerides and immune cells in allergic disease.


Subject(s)
Lipid Metabolism , Transcriptome , Humans , Cholesterol, HDL , Lipid Metabolism/genetics , Triglycerides , Cholesterol, LDL , Mendelian Randomization Analysis , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Risk Factors
19.
Eur J Hum Genet ; 31(11): 1300-1308, 2023 11.
Article in English | MEDLINE | ID: mdl-36807342

ABSTRACT

Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet known to be involved in kidney disease. We have developed KidneyNetwork, that utilizes tissue-specific expression to inform candidate gene prioritization specifically for kidney diseases. KidneyNetwork is a novel method constructed by integrating a kidney RNA-sequencing co-expression network of 878 samples with a multi-tissue network of 31,499 samples. It uses expression patterns and established gene-phenotype associations to predict which genes could be related to what (disease) phenotypes in an unbiased manner. We applied KidneyNetwork to rare variants in exome sequencing data from 13 kidney disease patients without a genetic diagnosis to prioritize candidate genes. KidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) phenotypes for disease-associated genes. The intersection of prioritized genes with genes carrying rare variants in a patient with kidney and liver cysts identified ALG6 as plausible candidate gene. We strengthen this plausibility by identifying ALG6 variants in several cystic kidney and liver disease cases without alternative genetic explanation. We present KidneyNetwork, a publicly available kidney-specific co-expression network with optimized gene-phenotype predictions for kidney disease phenotypes. We designed an easy-to-use online interface that allows clinicians and researchers to use gene expression and co-regulation data and gene-phenotype connections to accelerate advances in hereditary kidney disease diagnosis and research. TRANSLATIONAL STATEMENT: Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes not yet known to be involved in kidney disease, making it difficult to interpret the relevance of these variants. This reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork can aid the interpretation of genetic variants and can therefore be of value in translational nephrogenetics and help improve the diagnostic yield in kidney disease patients.


Subject(s)
Kidney Diseases, Cystic , Kidney Diseases , Liver Diseases , Humans , Kidney , Phenotype , Gene Expression
20.
Nat Genet ; 55(3): 377-388, 2023 03.
Article in English | MEDLINE | ID: mdl-36823318

ABSTRACT

Identification of therapeutic targets from genome-wide association studies (GWAS) requires insights into downstream functional consequences. We harmonized 8,613 RNA-sequencing samples from 14 brain datasets to create the MetaBrain resource and performed cis- and trans-expression quantitative trait locus (eQTL) meta-analyses in multiple brain region- and ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs for 31 brain-related traits using Mendelian randomization and co-localization including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs for 526 unique variants and 108 unique genes. We used brain-specific gene-co-regulation networks to link GWAS loci and prioritize additional genes for five central nervous system diseases. This study represents a valuable resource for post-GWAS research on central nervous system diseases.


Subject(s)
Brain Diseases , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genome-Wide Association Study , Gene Regulatory Networks/genetics , Brain , Phenotype , Brain Diseases/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...