Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
ACS Nano ; 18(18): 11644-11654, 2024 May 07.
Article En | MEDLINE | ID: mdl-38653474

Nanophotonic devices excel at confining light into intense hot spots of electromagnetic near fields, creating exceptional opportunities for light-matter coupling and surface-enhanced sensing. Recently, all-dielectric metasurfaces with ultrasharp resonances enabled by photonic bound states in the continuum (BICs) have unlocked additional functionalities for surface-enhanced biospectroscopy by precisely targeting and reading out the molecular absorption signatures of diverse molecular systems. However, BIC-driven molecular spectroscopy has so far focused on end point measurements in dry conditions, neglecting the crucial interaction dynamics of biological systems. Here, we combine the advantages of pixelated all-dielectric metasurfaces with deep learning-enabled feature extraction and prediction to realize an integrated optofluidic platform for time-resolved in situ biospectroscopy. Our approach harnesses high-Q metasurfaces specifically designed for operation in a lossy aqueous environment together with advanced spectral sampling techniques to temporally resolve the dynamic behavior of photoswitchable lipid membranes. Enabled by a software convolutional neural network, we further demonstrate the real-time classification of the characteristic cis and trans membrane conformations with 98% accuracy. Our synergistic sensing platform incorporating metasurfaces, optofluidics, and deep learning reveals exciting possibilities for studying multimolecular biological systems, ranging from the behavior of transmembrane proteins to the dynamic processes associated with cellular communication.


Artificial Intelligence , Surface Properties , Spectrum Analysis/methods , Membrane Lipids/chemistry , Deep Learning
2.
Glob Chall ; 8(3): 2300306, 2024 Mar.
Article En | MEDLINE | ID: mdl-38486928

Silicon (Si), the eighth most common element in the known universe by mass and widely applied in the industry of electronics chips and solar cells, rarely emerges as a pure element in the Earth's crust. Optimizing its manufacturing can be crucial in the global challenge of reducing the cost of renewable energy modules and implementing sustainable development goals in the future. In the industry of solar cells, this challenge is stimulating studies of ultrathin Si-based architectures, which are rapidly attracting broad attention. Ultrathin solar cells require up to two orders of magnitude less Si than conventional solar cells, and owning to a flexible nature, they are opening applications in different industries that conventional cells do not yet serve. Despite these attractive factors, a difficulty in ultrathin Si solar cells is overcoming the weak light absorption at near-infrared wavelengths. The primary goal in addressing this problem is scaling up cost-effective and innovative textures for anti-reflection and light-trapping with shallower depth junctions, which can offer similar performances to traditional thick modules. This review provides an overview of this area of research, discussing this field both as science and engineering and highlighting present progress and future outlooks.

3.
Commun Biol ; 7(1): 154, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321111

Mapping the cellular refractive index (RI) is a central task for research involving the composition of microorganisms and the development of models providing automated medical screenings with accuracy beyond 95%. These models require significantly enhancing the state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high throughput. Here, we present a machine-learning-based technique that obtains a biological specimen's real-time RI and thickness maps from a single image acquired with a conventional color camera. This technology leverages a suitably engineered nanostructured membrane that stretches a biological analyte over its surface and absorbs transmitted light, generating complex reflection spectra from each sample point. The technique does not need pre-existing sample knowledge. It achieves 10-4 RI sensitivity and sub-nanometer thickness resolution on diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional reconstruction of the cellular regions with a characteristic length of 30 µm. These results can facilitate the development of real-time label-free technologies for biomedical studies on microscopic multicellular dynamics.


Refractometry , Humans , HCT116 Cells
4.
Adv Mater ; 35(7): e2208533, 2023 Feb.
Article En | MEDLINE | ID: mdl-36448504

Electrocatalytic two-electron oxygen reduction (2e- ORR) to hydrogen peroxide (H2 O2 ) is attracting broad interest in diversified areas including paper manufacturing, wastewater treatment, production of liquid fuels, and public sanitation. Current efforts focus on researching low-cost, large-scale, and sustainable electrocatalysts with high activity and selectivity. Here a large-scale H2 O2 electrocatalysts based on metal-free carbon fibers with a fluorine and sulfur dual-doping strategy is engineered. Optimized samples yield with a high onset potential of 0.814 V versus reversible hydrogen electrode (RHE), an almost ideal 2e- pathway selectivity of 99.1%, outperforming most of the recently reported carbon-based or metal-based electrocatalysts. First principle theoretical computations and experiments demonstrate that the intermolecular charge transfer coupled with electron spin redistribution from fluorine and sulfur dual-doping is the crucial factor contributing to the enhanced performances in 2e- ORR. This work opens the door to the design and implementation of scalable, earth-abundant, highly selective electrocatalysts for H2 O2 production and other catalytic fields of industrial interest.

5.
Adv Mater ; 34(11): e2108013, 2022 Mar.
Article En | MEDLINE | ID: mdl-34919763

Unveiling physical phenomena that generate controllable structural coloration is at the center of significant research efforts due to the platform potential for the next generation of printing, sensing, displays, wearable optoelectronics components, and smart fabrics. Colors based on e-beam facilities possess high resolutions above 100k dots per inch (DPI), but limit manufacturing scales up to 4.37 cm2 , while requiring rigid substrates that are not flexible. State-of-art scalable techniques, on the contrary, provide either narrow gamuts or small resolutions. A common issue of current methods is also a heterogeneous resolution, which typically changes with the color printed. Here, a structural coloration platform with broad gamuts exceeding the red, green, and blue (RGB) spectrum in inexpensive, thermally resistant, flexible, and metallic-free structures at constant 101 600 DPI (at the diffraction limit), obtained via mass-production manufacturing is demonstrated. This platform exploits a previously unexplored physical mechanism, which leverages the interplay between strong scattering modes and optical resonances excited in fully 3D dielectric nanostructures with suitably engineered longitudinal profiles. The colors obtained with this technology are scalable to any area, demonstrated up to the single wafer (4 in.). These results open real-world applications of inexpensive, high-resolution, large-scale structural colors with broad chromatic spectra.

6.
ACS Nanosci Au ; 2(5): 422-432, 2022 Oct 19.
Article En | MEDLINE | ID: mdl-37102133

Controlling the flow of broadband electromagnetic energy at the nanoscale remains a critical challenge in optoelectronics. Surface plasmon polaritons (or plasmons) provide subwavelength localization of light but are affected by significant losses. On the contrary, dielectrics lack a sufficiently robust response in the visible to trap photons similar to metallic structures. Overcoming these limitations appears elusive. Here we demonstrate that addressing this problem is possible if we employ a novel approach based on suitably deformed reflective metaphotonic structures. The complex geometrical shape engineered in these reflectors emulates nondispersive index responses, which can be inverse-designed following arbitrary form factors. We discuss the realization of essential components such as resonators with an ultrahigh refractive index of n = 100 in diverse profiles. These structures support the localization of light in the form of bound states in the continuum (BIC), fully localized in air, in a platform in which all refractive index regions are physically accessible. We discuss our approach to sensing applications, designing a class of sensors where the analyte directly contacts areas of ultrahigh refractive index. Leveraging this feature, we report an optical sensor with sensitivity two times higher than the closest competitor with a similar micrometer footprint. Inversely designed reflective metaphotonics offers a flexible technology for controlling broadband light, supporting optoelectronics' integration with large bandwidths in circuitry with miniaturized footprints.

7.
Phys Rev Lett ; 123(14): 140501, 2019 Oct 04.
Article En | MEDLINE | ID: mdl-31702172

Many disordered systems show a superdiffusive dynamics, intermediate between the diffusive one, typical of a classical stochastic process, and the so-called ballistic behavior, which is generally expected for the spreading in a quantum process. We have experimentally investigated the superdiffusive behavior of a quantum walk, whose dynamics can be related to energy transport phenomena, with a resolution which is high enough to clearly distinguish between different disorder regimes. By our experimental setup, the region between ballistic and diffusive spreading can be effectively scanned by suitably setting few degrees of freedom and without applying any decoherence to the quantum walk evolution.

8.
Nat Commun ; 9(1): 5428, 2018 12 21.
Article En | MEDLINE | ID: mdl-30575738

Engineering hotspots is of crucial importance in many applications including energy harvesting, nano-lasers, subwavelength imaging, and biomedical sensing. Surface-enhanced Raman scattering spectroscopy is a key technique to identify analytes that would otherwise be difficult to diagnose. In standard systems, hotspots are realised with nanostructures made by acute tips or narrow gaps. Owing to the low probability for molecules to reach such tiny active regions, high sensitivity is always accompanied by a large preparation time for analyte accumulation which hinders the time response. Inspired by transformation optics, we introduce an approach based on warped spaces to manipulate hotspots, resulting in broadband enhancements in both the magnitude and volume. Experiments for single molecule detection with a fast soaking time are realised in conjunction with broadband response and uniformity. Such engineering could provide a new design platform for a rich manifold of devices, which can benefit from broadband and huge field enhancements.

9.
Nat Commun ; 8: 15535, 2017 05 31.
Article En | MEDLINE | ID: mdl-28561017

Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

10.
Adv Mater ; 29(27)2017 Jul.
Article En | MEDLINE | ID: mdl-28481018

The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1 cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.

11.
Adv Mater ; 29(16)2017 Apr.
Article En | MEDLINE | ID: mdl-28225207

Organolead trihalide perovskites have drawn substantial interest for photovoltaic and optoelectronic applications due to their remarkable physical properties and low processing cost. However, perovskite thin films suffer from low carrier mobility as a result of their structural imperfections such as grain boundaries and pinholes, limiting their device performance and application potential. Here we demonstrate a simple and straightforward synthetic strategy based on coupling perovskite films with embedded single-walled carbon nanotubes. We are able to significantly enhance the hole and electron mobilities of the perovskite film to record-high values of 595.3 and 108.7 cm2 V-1 s-1 , respectively. Such a synergistic effect can be harnessed to construct ambipolar phototransistors with an ultrahigh detectivity of 3.7 × 1014 Jones and a responsivity of 1 × 104 A W-1 , on a par with the best devices available to date. The perovskite/carbon nanotube hybrids should provide a platform that is highly desirable for fields as diverse as optoelectronics, solar energy conversion, and molecular sensing.

12.
Nanotechnology ; 28(10): 104001, 2017 Mar 10.
Article En | MEDLINE | ID: mdl-28145277

One of the most fascinating possibilities enabled by metamaterials is the strong reduction of the electromagnetic scattering from nanostructures. In dielectric nanoparticles, the formation of a minimal scattering state at specific wavelengths is associated with the excitation of photonic anapoles, which represent a peculiar type of radiationless state and whose existence has been demonstrated experimentally. In this work, we investigate the formation of anapole states in generic dielectric structures by applying a Fano-Feshbach projection scheme, a general technique widely used in the study of quantum mechanical open systems. By expressing the total scattering from the structure in terms of an orthogonal set of internal and external modes, defined in the interior and in the exterior of the dielectric structure, respectively, we show how anapole states are the result of a complex interaction among the resonances of the system and the surrounding environment. We apply our approach to a circular resonator, where we observe the formation of higher-order anapole states, which are originated by the superposition of several internal resonances of the system.

13.
Light Sci Appl ; 6(5): e16233, 2017 May.
Article En | MEDLINE | ID: mdl-30167248

Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

14.
Nano Lett ; 16(1): 617-23, 2016 Jan 13.
Article En | MEDLINE | ID: mdl-26670659

Asymmetric nanocrystals have practical significance in nanotechnologies but present fundamental synthetic challenges. Thiol ligands have proven effective in breaking the symmetric growth of metallic nanocrystals but their exact roles in the synthesis remain elusive. Here, we synthesized an unprecedented Au nanorod-Au nanoparticle (AuNR-AuNP) dimer structure with the assistance of a thiol ligand. On the basis of our experimental observations, we unraveled for the first time that the thiol could cause an inhomogeneous distribution of surface strains on the seed crystals as well as a modulated reduction rate of metal precursors, which jointly induced the asymmetric growth of monometallic dimers.


Metal Nanoparticles/chemistry , Nanotechnology , Nanotubes/chemistry , Polymers/chemistry , Gold/chemistry , Ligands , Sulfhydryl Compounds/chemistry , Surface Plasmon Resonance
15.
Nat Nanotechnol ; 11(1): 60-6, 2016 Jan.
Article En | MEDLINE | ID: mdl-26479025

Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of ∼100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (∼5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses.

16.
Sci Adv ; 1(8): e1500487, 2015 Sep.
Article En | MEDLINE | ID: mdl-26601267

Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10(-12) M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

17.
Small ; 11(39): 5214-21, 2015 Oct 21.
Article En | MEDLINE | ID: mdl-26270384

Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core-shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H(2)O(2) solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620-690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

18.
Nano Lett ; 15(2): 1101-8, 2015 Feb 11.
Article En | MEDLINE | ID: mdl-25547345

Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

19.
Sci Rep ; 3: 1407, 2013.
Article En | MEDLINE | ID: mdl-23470597

The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

20.
Opt Express ; 20(16): 18156-64, 2012 Jul 30.
Article En | MEDLINE | ID: mdl-23038363

By employing Random Matrix Theory (RMT) and first-principle calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media.

...