Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Vis Exp ; (207)2024 May 31.
Article in English | MEDLINE | ID: mdl-38884479

ABSTRACT

To control and decrease the public health impact of human protozoan diseases such as Chagas disease, leishmaniasis, and human African trypanosomiasis, expediting the development of new drugs and vaccines is necessary. However, this process is filled with difficulties such as highly complex parasite biology and disease pathogenesis and, as typical for neglected tropical diseases, comparatively limited funding for research and development. Thus, in vitro and in vivo study models that can sufficiently reproduce infection and disease key features while providing rational use of resources are essential for progressing research for these conditions. One example is the in vivo bioluminescence imaging (BLI) mouse model for Chagas disease, which provides highly sensitive detection of long wavelength light generated by Trypanosoma cruzi parasites expressing luciferase. Despite this technique becoming the standard approach for drug efficacy in vivo studies, research groups might still struggle to implement it due to a lack of proper practical training on equipment handling and application of quality control procedures, even when suitable BLI equipment is readily available. Considering this scenario, this protocol aims to guide from planning experiments to data acquisition and analysis, with details that facilitate the implementation of protocols in research groups with little or no experience with BLI, either for Chagas disease or for other infectious disease mouse models.


Subject(s)
Chagas Disease , Disease Models, Animal , Luminescent Measurements , Trypanosoma cruzi , Animals , Chagas Disease/diagnostic imaging , Mice , Luminescent Measurements/methods , Trypanosoma cruzi/drug effects , Luciferases/genetics , Luciferases/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
2.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399167

ABSTRACT

The use of copper as an antimicrobial agent has a long history and has gained renewed interest in the context of the COVID-19 pandemic. In this study, the authors investigated the antimicrobial properties of an alloy composed of copper with a small percentage of silver (Cu-0.03% wt.Ag). The alloy was tested against various pathogens, including Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and the H1N1 virus, using contact exposure tests. Results showed that the alloy was capable of inactivating these pathogens in two hours or less, indicating its strong antimicrobial activity. Electrochemical measurements were also performed, revealing that the small addition of silver to copper promoted a higher resistance to corrosion and shifted the formation of copper ions to higher potentials. This shift led to a slow but continuous release of Cu2+ ions, which have high biocidal activity. These findings show that the addition of small amounts of silver to copper can enhance its biocidal properties and improve its effectiveness as an antimicrobial material.

3.
Pharmaceutics ; 16(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38399250

ABSTRACT

The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.

4.
Fitoterapia ; 173: 105820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211642

ABSTRACT

In this study, we specifically focused on the crude methanolic leaf extract of Byrsonima coccolobifolia, investigating its antifungal potential against human pathogenic fungi and its antiviral activity against COVID-19. Through the use of high-performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry, direct infusion electrospray ionization ion trap tandem mass spectrometry, and chromatographic dereplication procedures, we identified galloyl quinic acid derivatives, catechin derivatives, proanthocyanidins, and flavonoid glycosides. The broth dilution assay revealed that the methanolic leaf extract of B. coccolobifolia exhibits antifungal activity against Cryptococcus neoformans (IC50 = 4 µg/mL). Additionally, docking studies were conducted to elucidate the interactions between the identified compounds and the central residues at the binding site of biological targets associated with COVID-19. Furthermore, the extract demonstrated an in vitro half-maximum effective concentration (EC50 = 7 µg/mL) and exhibited significant selectivity (>90%) toward SARS-CoV-2.


Subject(s)
COVID-19 , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antifungal Agents , Molecular Structure , SARS-CoV-2 , Spectrometry, Mass, Electrospray Ionization/methods , Methanol , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid/methods
5.
Antimicrob Agents Chemother ; 66(11): e0028422, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36314800

ABSTRACT

Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit Trypanosoma cruzi infection in host cells, could boost the anti-T. cruzi effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity. Conversely, a combination of BZN and CQ significantly reduced T. cruzi infection in vitro, with no apparent cytotoxicity. This effect seemed to be consistent across different cell lines and against both the partially BZN-resistant Y and the highly BZN-resistant Colombiana strains. In vivo experiments in an acute murine model showed that the BZN+CQ combination was eight times more effective in reducing T. cruzi infection in the acute phase than BZN monotherapy. In summary, our results demonstrate that the concomitant administration of CQ and BZN potentiates the trypanocidal activity of BZN, leading to a reduction in the dose needed to achieve an effective response. In a translational context, it could represent a higher efficacy of treatment while also mitigating the adverse effects of high doses of BZN. Our study also reinforces the relevance of drug combination and repurposing approaches in the field of Chagas disease drug discovery.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Drug Repositioning , Chloroquine/pharmacology , Chloroquine/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
6.
Nanomedicine ; 45: 102595, 2022 09.
Article in English | MEDLINE | ID: mdl-36031045

ABSTRACT

The development of safe and effective vaccine formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a hallmark in the history of vaccines. Here we report a COVID-19 subunit vaccine based on a SARS-CoV-2 Spike protein receptor binding domain (RBD) incorporated into nano-multilamellar vesicles (NMV) associated with monophosphoryl lipid A (MPLA). The results based on immunization of C57BL/6 mice demonstrated that recombinant antigen incorporation into NMVs improved antibody and T-cell responses without inducing toxic effects under both in vitro and in vivo conditions. Administration of RBD-NMV-MPLA formulations modulated antigen avidity and IgG subclass responses, whereas MPLA incorporation improved the activation of CD4+/CD8+ T-cell responses. In addition, immunization with the complete vaccine formulation reduced the number of doses required to achieve enhanced serum virus-neutralizing antibody titers. Overall, this study highlights NMV/MPLA technology, displaying the performance improvement of subunit vaccines against SARS-CoV-2, as well as other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipids , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
7.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443484

ABSTRACT

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Subject(s)
Crotalid Venoms/chemistry , Dimerization , Papain/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptides/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Conformation , SARS-CoV-2/drug effects
8.
Genet Mol Biol ; 44(1 Suppl 1): e20200198, 2020.
Article in English | MEDLINE | ID: mdl-33275129

ABSTRACT

The emergence of the new corona virus (SARS-CoV-2) and the resulting COVID-19 pandemic requires fast development of novel prevention and therapeutic strategies. These rely on understanding the biology of the virus and its interaction with the host, and on agnostic phenotypic screening for compounds that prevent viral infection. In vitro screenings of compounds are usually performed in human or animal-derived tumor or immortalized cell lines due to their ease of culturing. However, these platforms may not represent the tissues affected by the disease in vivo, and therefore better models are needed to validate and expedite drug development, especially in face of the COVID-19 pandemic. In this scenario, human induced pluripotent stem cells (hiPSCs) are a powerful research tool due to their ability to generate normal differentiated cell types relevant for the disease. Here we discuss the different ways hiPSCs can contribute to COVID-19 related research, including modeling the disease in vitro and serving as a platform for drug screening.

10.
Int J Parasitol Drugs Drug Resist ; 13: 107-120, 2020 08.
Article in English | MEDLINE | ID: mdl-32688218

ABSTRACT

Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Drug Resistance, Multiple/genetics , Sterol 14-Demethylase/genetics , Trypanosoma cruzi , Animals , Cell Line , Chagas Disease/drug therapy , Genes, Protozoan , Mutation , Nitroimidazoles/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
11.
Molecules ; 25(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486239

ABSTRACT

High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.


Subject(s)
Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Drug Evaluation, Preclinical , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis, Visceral/drug therapy , Maprotiline/chemistry , Mice , Protriptyline/chemistry , Species Specificity , THP-1 Cells
12.
Biomolecules ; 10(5)2020 05 20.
Article in English | MEDLINE | ID: mdl-32443921

ABSTRACT

In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.


Subject(s)
Amphibian Proteins/metabolism , Anura/metabolism , Defensins/metabolism , Skin/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Animals , Arboviruses/drug effects , Bacteria/drug effects , Candida/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Defensins/chemistry , Defensins/pharmacology , Hemolysis/drug effects , Humans , Neutrophils/drug effects , Protein Conformation, alpha-Helical , Trypanosoma cruzi/drug effects
13.
Bioorg Med Chem ; 27(22): 115083, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31561938

ABSTRACT

The structure-activity relationship for nitrile-based cruzain inhibitors incorporating a P2 amide replacement based on trifluoroethylamine was explored by deconstruction of a published series of inhibitors. It was demonstrated that the P3 biphenyl substituent present in the published inhibitor structures could be truncated to phenyl with only a small loss of affinity. The effects of inverting the configuration of the P2 amide replacement and linking a benzyl substituent at P1 were observed to be strongly nonadditive. We show that plotting affinity against molecular size provides a means to visualize both the molecular size efficiency of structural transformations and the nonadditivity in the structure-activity relationship. We also show how the relationship between affinity and lipophilicity, measured by high-performance liquid chromatography with an immobilized artificial membrane stationary phase, may be used to normalize affinity with respect to lipophilicity.


Subject(s)
Amides/chemistry , Cysteine Endopeptidases/chemical synthesis , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemical synthesis , Molecular Structure , Structure-Activity Relationship
14.
SLAS Discov ; 24(7): 755-765, 2019 08.
Article in English | MEDLINE | ID: mdl-31180789

ABSTRACT

The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the "Pathogen Box" library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Drug Discovery/methods , Fluorescent Dyes/chemistry , Parasitic Sensitivity Tests/methods , Thiadiazoles/chemistry , Animals , Kinetics , Molecular Structure , Optical Imaging/methods
15.
SLAS Discov ; 24(3): 346-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30784368

ABSTRACT

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Subject(s)
Drug Discovery/methods , Trypanocidal Agents/analysis , Trypanocidal Agents/pharmacology , Trypanosomiasis/drug therapy , Biological Products/chemistry , Humans , Structure-Activity Relationship , Trypanocidal Agents/therapeutic use
16.
Eur J Med Chem ; 163: 649-659, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30562700

ABSTRACT

Chagas disease is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi and is primarily transmitted to humans by the feces of infected Triatominae insects during their blood meal. The disease affects 6-8 million people, mostly in Latin America countries, and kills more people in the region each year than any other parasite-born disease, including malaria. Moreover, patient numbers are currently increasing in non-endemic, developed countries, such as Australia, Japan, Canada, and the United States. The treatment is limited to one drug, benznidazole, which is only effective in the acute phase of the disease and is very toxic. Thus, there is an urgent need to develop new, safer, and effective drugs against the chronic phase of Chagas disease. Using a QSAR-based virtual screening followed by in vitro experimental evaluation, we report herein the identification of novel potent and selective hits against T. cruzi intracellular stage. We developed and validated binary QSAR models for prediction of anti-trypanosomal activity and cytotoxicity against mammalian cells using the best practices for QSAR modeling. These models were then used for virtual screening of a commercial database, leading to the identification of 39 virtual hits. Further in vitro assays showed that seven compounds were potent against intracellular T. cruzi at submicromolar concentrations (EC50 < 1 µM) and were very selective (SI > 30). Furthermore, other six compounds were also inside the hit criteria for Chagas disease, which presented activity at low micromolar concentrations (EC50 < 10 µM) against intracellular T. cruzi and were also selective (SI > 15). Moreover, we performed a multi-parameter analysis for the comparison of tested compounds regarding their balance between potency, selectivity, and predicted ADMET properties. In the next studies, the most promising compounds will be submitted to additional in vitro and in vivo assays in acute model of Chagas disease, and can be further optimized for the development of new promising drug candidates against this important yet neglected disease.


Subject(s)
Chagas Disease/drug therapy , Drug Discovery , Quantitative Structure-Activity Relationship , Trypanosoma cruzi/drug effects , Drug Evaluation, Preclinical/methods , Humans , Trypanocidal Agents/chemistry
17.
ACS Omega ; 3(4): 3874-3881, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-30023883

ABSTRACT

The current article describes the synthesis, characterization, and application of a designed hybrid fluorescent BTD-coumarin (2,1,3-benzothiadiazole-coumarin) derivative (named BTD-Lip). The use of BTD-Lip for live-cells staining showed excellent results, and lipid droplets (LDs) could be selectively stained. When compared with the commercially available dye (BODIPY) for LD staining, it was noted that the designed hybrid fluorescence was capable of staining a considerable larger number of LDs in both live and fixed cells (ca. 40% more). The new dye was also tested on live Caenorhabditis elegans (complex model) and showed an impressive selectivity inside the worm, whereas the commercial dye showed no selectivity in the complex model.

18.
ChemMedChem ; 13(7): 678-683, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29451361

ABSTRACT

Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC50 values of 1.8 and 1.9 µg mL-1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead.


Subject(s)
Antiprotozoal Agents/pharmacology , Small Molecule Libraries/pharmacology , Triazoles/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Cell Line, Tumor , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/toxicity , ERG1 Potassium Channel/metabolism , Humans , Leishmania/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/toxicity , Rats , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/toxicity , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/toxicity , Trypanosoma/drug effects
19.
Eur J Med Chem ; 146: 423-434, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29407968

ABSTRACT

Basing on a library of thiadiazole derivatives showing anti-trypanosomatidic activity, we have considered the thiadiazoles opened forms and reaction intermediates, thiosemicarbazones, as compounds of interest for phenotypic screening against Trypanosoma brucei (Tb), intracellular amastigote form of Leishmania infantum (Li) and Trypanosoma cruzi (Tc). Similar compounds have already shown interesting activity against the same organisms. The compounds were particularly effective against T. brucei and T. cruzi. Among the 28 synthesized compounds, the best one was (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene) hydrazinecarbothioamide (A14) yielding a comparable anti-parasitic activity against the three parasitic species (TbEC50 = 2.31 µM, LiEC50 = 6.14 µM, TcEC50 = 1.31 µM) and a Selectivity Index higher than 10 with respect to human macrophages, therefore showing a pan-anti-trypanosomatidic activity. (E)-2-((3'.4'-dimethoxy-[1.1'-biphenyl]-3-yl)methyle ne) hydrazinecarbothioamide (A12) and (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene)hydrazine carbothioamide (A14) were able to potentiate the anti-parasitic activity of methotrexate (MTX) when evaluated in combination against T. brucei, yielding a 6-fold and 4-fold respectively Dose Reduction Index for MTX. The toxicity profile against four human cell lines and a panel of in vitro early-toxicity assays (comprising hERG, Aurora B, five cytochrome P450 isoforms and mitochondrial toxicity) demonstrated the low toxicity for the thosemicarbazones class in comparison with known drugs. The results confirmed thiosemicarbazones as a suitable chemical scaffold with potential for the development of properly decorated new anti-parasitic drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Thiosemicarbazones/pharmacology , Trypanosoma/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
20.
F1000Res, v. 7, 1730, ago. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4114

ABSTRACT

Chikungunya fever is an emerging disease and a significant public health problem in tropical countries. Recently reported outbreaks in Brazil in 2015 drew attention to the need to develop prevention and treatment options, as no antiviral chemotherapy or vaccines are currently available for this disease. Two strategies have been proved to accelerate the discovery of new anti-infectives: phenotypic screening and drug repurposing. Phenotypic screening can support the fast interrogation of compounds without the need for a pre-validated drug target, which is not available for the chikungunya virus (CHIKV) and has the additional advantage of facilitating the discovery of antiviral with novel mechanism of action. Drug repurposing can save time and resources in drug development by enabling secondary uses for drugs that are already approved for human treatment, thus precluding the need for several of the mandatory preclinical and clinical studies necessary for drug approval. A phenotypic screening assay was developed by infecting the human hepatoma Huh-7 cells with CHIKV 181/25 and quantifying infection through indirect immunofluorescence. The compound 6-azauridine was used as a positive control drug. The screening assay was validated by testing a commercial library of 1,280 compounds, including FDA-approved drugs, and used to screen a panel of broad-spectrum antiviral compounds for anti-CHIKV activity. A high content assay was set up in Huh-7 cells-infected with CHIKV. The maximum rate of infection peaked at 48 hours post-infection, after which the host cell number was greatly reduced due to a strong cytopathic effect. Assay robustness was confirmed with Z’-factor values >0.8 and high correlation coefficient between independent runs, demonstrating that the assay is reliable, consistent and reproducible. Among tested compounds, sofosbuvir, an anti-hepatitis C virus drug, exhibited good selectivity against CHIKV with an EC50 of 11 µM, suggesting it is a promising candidate for repurposing.

SELECTION OF CITATIONS
SEARCH DETAIL