Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Chem Neurosci ; 11(3): 427-435, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31898886

ABSTRACT

Development of positron emission tomography (PET) imaging agents capable of quantifying tau aggregates in neurodegenerative disorders such as Alzheimer's disease (AD) is of enormous importance in the field of dementia research. The aim of the present study was to conduct first-in-man imaging studies with the potential novel tau imaging agent [18F]N-methyl lansoprazole ([18F]NML). Herein we report validation of the synthesis of [18F]NML for clinical use by labeling the trifluoromethyl group via radiofluorination of the corresponding gem-difluoro enol ether precursor. This is the first use of this method for clinical production of PET radiotracers and confirmed that it can be readily implemented at multiple production facilities to provide [18F]NML in good noncorrected radiochemical yield (3.4 ± 1.5 GBq, 4.6% ± 2.6%) and molar activity (120.1 ± 186.3 GBq/µmol), excellent radiochemical purity (>97%), and suitable for human use (n = 15). With [18F]NML in hand, we conducted rodent biodistribution, estimates of human dosimetry, and preliminary evaluation of [18F]NML in human subjects at two imaging sites. Healthy controls (n = 4) and mildly cognitively impaired (MCI) AD patients (n = 6) received [18F]NML (tau), [18F]AV1451 (tau), and [18F]florbetaben or [18F]florbetapir (amyloid) PET scans. A single progressive supranuclear palsy (PSP) patient also received [18F]NML and [18F]AV1451 PET scans. [18F]NML showed good brain uptake, reasonable pharmacokinetics, and appropriate imaging characteristics in healthy controls. The mean ± SD of the administered mass of [18F/19F]NML was 2.01 ± 2.17 µg (range, 0.16-8.27 µg) and the mean administered activity was 350 ± 62 MBq (range, 199-403 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the 11 subjects, and no significant changes in vital signs were observed. However, despite high affinity for tau in vitro, brain retention in MCI/AD and PSP patients was low, and there was no evidence of specific signals in vivo that corresponded to tau. Although it is still unclear why clinical translation of the radiotracer was unsuccessful, we nevertheless conclude that further development of [18F]NML as a tau PET imaging agent is not warranted at this time.


Subject(s)
Alzheimer Disease/diagnostic imaging , Aniline Compounds/pharmacology , Cognitive Dysfunction/diagnostic imaging , Ethylene Glycols/pharmacology , Lansoprazole/pharmacology , Tissue Distribution/drug effects , Aged , Aged, 80 and over , Brain/drug effects , Brain/metabolism , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods
2.
Neurology ; 81(18): 1611-6, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24078735

ABSTRACT

OBJECTIVE: We investigated dopaminergic and cholinergic correlates of gait speed in Parkinson disease (PD) and non-PD control subjects to test the hypothesis that gait dysfunction in PD may result from multisystem degeneration. METHODS: This was a cross-sectional study. Subjects with PD but without dementia (n = 125, age 65.6 ± 7.3 years) and elderly subjects without PD (n = 32, age 66.0 ± 10.6 years) underwent [¹¹C]dihydrotetrabenazine dopaminergic and [(11)C]methyl-4-piperidinyl propionate acetylcholinesterase PET imaging, and cognitive and clinical testing, including an 8.5-m walk in the dopaminergic "off" state. The fifth percentile of cortical cholinergic activity in the elderly without PD was used to define normal-range activity in the subjects with PD. RESULTS: Normal-range cortical cholinergic activity was present in 87 subjects with PD (69.6%). Analysis of covariance using gait speed as the dependent variable demonstrated a significant model (F = 6.70, p < 0.0001) with a significant group effect (F = 3.36, p = 0.037) and significant slower gait speed in the low cholinergic PD subgroup (0.97 ± 0.22 m/s) with no significant difference between the normal-range cholinergic PD subgroup (1.12 ± 0.20 m/s) and control subjects (1.17 ± 0.18 m/s). Covariate effects were significant for cognition (F = 6.58, p = 0.011), but not for striatal dopaminergic innervation, sex, or age. CONCLUSION: Comorbid cortical cholinergic denervation is a more robust marker of slowing of gait in PD than nigrostriatal denervation alone. Gait speed is not significantly slower than normal in subjects with PD with relatively isolated nigrostriatal denervation.


Subject(s)
Acetylcholinesterase/metabolism , Gait Disorders, Neurologic/etiology , Nerve Degeneration/complications , Nerve Degeneration/enzymology , Parkinson Disease/complications , Parkinson Disease/pathology , Aged , Aged, 80 and over , Analysis of Variance , Carbon Isotopes , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Cross-Sectional Studies , Dioxolanes , Female , Gait Disorders, Neurologic/diagnostic imaging , Humans , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL