Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36671842

ABSTRACT

In this work, a simple, low-cost, green, and mild method for the preparation of three-dimensional nanocomposite materials of gold nanorods (Au NRs)@TiO2 is reported. The surface of Au NRs was coated with TiO2 in situ reduction at room temperature without a complicated operation. The synthetic Au NRs@TiO2 nanocomposites were used as surface-enhanced Raman spectroscopy (SERS) active substrates for the reusable and sensitive detection of environmental pollutants. The results showed that the pollutants on Au NRs@TiO2 nanocomposites have higher SERS activity and reproducibility than those on the Au NR substrate without the presence of TiO2. Moreover, the SERS substrate can be readily recycled by UV-assisted self-cleaning to remove residual analyte molecules. Malachite green (MG) and crystal violet (CV) were used as examples to demonstrate the feasibility of the proposed sensor for the sensitive detection of environmental pollutants. The results showed that the limit of detections (LODs) were 0.75 µg/L and 0.50 µg/L for MG and CV, respectively, with the recoveries ranging from 86.67% to 91.20% and 83.70% to 89.00%. Meanwhile, the SERS substrate can be easily regenerated by UV light irradiation. Our investigation revealed that within three cycles, the Au NRs@TiO2 substrates still maintained the high SERS enhancement effect that they showed when first used for SERS detection. These results indicated that the method can be used to detect MG and CV in really complex samples. Due to the high sensitivity, reusability, and portability and the rapid detection property of the proposed sensor, it can have potential applications in the on-site detection of environmental pollutants in a complex sample matrix.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Nanocomposites , Nanotubes , Metal Nanoparticles/chemistry , Environmental Pollutants/analysis , Reproducibility of Results , Spectrum Analysis, Raman/methods , Gentian Violet , Nanotubes/chemistry , Gold/chemistry
2.
Mikrochim Acta ; 186(2): 64, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30627805

ABSTRACT

A surface-enhanced Raman scattering (SERS) substrate with good flexibility and high water absorbing capacity is reported. It consists of a calcium alginate sponge incorporating gold nanoparticles. These are in close contact with the sponge without the need for amino or sulfhydryl modification. The substrate is capable of detecting the dyes crystal violet (CV) and malachite green (MG) in water directly and rapidly by immersing it into the liquid sample. Preconcentration and separation are not required. The dyes absorbed on the sponge can be detected without drying and thus the whole analytical process can be completed within 3 min. The results show that the lowest detectable concentrations are 0.1 and 0.25 µg⋅L-1 for CV and MG, respectively. This is lower than the minimum required performance limits set by the European Commission and the US EPA. Moreover, MG and CV can be simultaneously detected in liquid samples due to their different SERS bands (at 1216 and 1534 cm-1, respectively). It should be noted that the molecular structures of MG and CV are very similar. Therefore, the method has a large potential for determination of several analytes simultaneously even in complex sample metrics. Graphical abstract Schematic presentation of the fabrication of a sodium alginate sponge loaded with gold nanoparticles. Gold nanoparticles together with gel-like alginate were freeze-dried to form the sponge. The sponge was cross-linked by CaCl2 solution and then it was freeze-dried again.

SELECTION OF CITATIONS
SEARCH DETAIL
...