Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Article in English | MEDLINE | ID: mdl-38976200

ABSTRACT

PURPOSE OF REVIEW: Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis. RECENT FINDINGS: Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role. Pollen allergy is relatively low in Southern China, with allergies to grass pollen being more important than weed and tree pollens. Rosaceae fruits and legume seeds stand out as major related allergenic foods. Non-specific lipid transfer protein (nsLTP) has been found to be the most clinically relevant cross-reacting allergenic component, able to induce severe reactions. PR-10, profilin, defensin, chitinase, and gibberellin-regulated proteins are other important cross-reactive allergen molecules. Artemisia pollen can induce allergenic cross-reactions with a wide range of plant-derived foods in China, and spring tree pollens (Betula) are also important. nsLTP found in both pollen and plant-derived food is considered the most significant allergen in food pollen cross-reactivity. Component-resolved diagnosis with potential allergenic proteins is recommended to improve diagnostic accuracy and predict the potential risk of causing allergic symptoms.

2.
Food Funct ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898781

ABSTRACT

High-fat diets (HFDs) predispose to obesity and liver dysfunctions, and α-dicarbonyl compounds (α-DCs) present in highly processed foods are also implicated in relevant pathological processes. However, the synergistic harmful effects of α-DCs co-administered with HFDs remain to be elucidated. In this study, 6-week-old C57BL/6 mice were fed with a HFD co-administered with 0.5% methylglyoxal (MGO)/glyoxal (GO) in water for 8 weeks, and multi-omics approaches were employed to investigate the underlying toxicity mechanisms. The results demonstrated that the MGO intervention with a HFD led to an increased body weight and blood glucose level, accompanied by the biological accumulation of α-DCs and carboxymethyl-lysine, as well as elevated serum levels of inflammatory markers including IL-1ß, IL-6, and MIP-1α. Notably, hepatic lesions were observed in the MGO group under HFD conditions, concomitant with elevated levels of malondialdehyde. Transcriptomic analysis revealed enrichment of pathways and differentially expressed genes (DEGs) associated with inflammation and oxidative stress in the liver. Furthermore, α-DC intervention exacerbated gut microbial dysbiosis in the context of a HFD, and through Spearman correlation analysis, the dominant genera such as Fusobacterium and Bacteroides in the MGO group and Colidextribacter and Parabacteroides in the GO group were significantly correlated with a set of DEGs involved in inflammatory and oxidative stress pathways in the liver. This study provides novel insights into the healthy implications of dietary ultra-processed food products in the context of obesity-associated disorders.

3.
Synth Syst Biotechnol ; 9(3): 503-512, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38680946

ABSTRACT

Vitamin B2 is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5. The R5 strain could produce 540.23 ± 5.40 mg/L riboflavin, which was 10.61 % higher than the R4 strain containing plasmids pET-AE and pAC-Z harboring six key genes. To further enhance the production of riboflavin, homology matching and molecular docking were performed to identify key amino acid residues of FAD synthase. Nine point mutation sites were identified. By comparing riboflavin kinase activity, mutations of T203D and N210D, which respectively decreased by 29.90 % and 89.32 % compared to wild-type FAD synthase, were selected for CRISPR/Cas9 gene editing of the genome, generating engineered strains R203 and R210. pNEW-AZ was transformed into R203, generating R6. R6 produced 657.38 ± 47.48 mg/L riboflavin, a 21.69 % increase compared to R5. This study contributes to the high production of riboflavin in recombinant E. coli BL21.

4.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470104

ABSTRACT

With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.

5.
J Allergy Clin Immunol ; 154(1): 157-167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522626

ABSTRACT

BACKGROUND: A substantial proportion of sensitized individuals tolerate suspected foods without developing allergic symptoms; this phenomenon is known as sensitized tolerance. The immunogenic and metabolic features underlying the sensitized-tolerant phenotype remain largely unknown. OBJECTIVE: We aimed to uncover the metabolic signatures associated with clinical milk allergy (MA) and sensitized tolerance using metabolomics. METHODS: We characterized the serum metabolic and immunologic profiles of children with clinical IgE-mediated MA (n = 30) or milk-sensitized tolerance (n = 20) and healthy controls (n = 21). A comparative analysis was performed to identify dysregulated pathways associated with the clinical manifestations of food allergy. We also analyzed specific biomarkers indicative of different sensitization phenotypes in children with MA. The candidate metabolites were validated in an independent quantification cohort (n = 41). RESULTS: Metabolomic profiling confirmed the presence of a distinct metabolic signature that discriminated children with MA from those with milk-sensitized tolerance. Amino acid metabolites generated via arginine, proline, and glutathione metabolism were uniquely altered in children with sensitized tolerance. Arginine depletion and metabolism through the polyamine pathway to fuel glutamate synthesis were closely associated with suppression of clinical symptoms in the presence of allergen-specific IgE. In children with MA, the polysensitized state was characterized by disturbances in tryptophan metabolism. CONCLUSIONS: By combining untargeted metabolomics with targeted validation in an independent quantification cohort, we identified candidate metabolites as phenotypic and diagnostic biomarkers of food allergy. Our results provide insights into the pathologic mechanisms underlying childhood allergy and suggest potential therapeutic targets.


Subject(s)
Amino Acids , Biomarkers , Immune Tolerance , Metabolomics , Milk Hypersensitivity , Humans , Milk Hypersensitivity/immunology , Milk Hypersensitivity/blood , Male , Female , Amino Acids/metabolism , Child , Child, Preschool , Immunoglobulin E/blood , Immunoglobulin E/immunology , Phenotype , Infant , Animals , Allergens/immunology
6.
Int J Biol Macromol ; 258(Pt 1): 128951, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143054

ABSTRACT

In this study, the biosynthesis of phycocyanin ß-subunit (CpcB) in Escherichia coli BL21 was investigated, and its antioxidant activity and application in anti-browning of fresh-cut apples was explored. Four genes (cpcB, cpeS, hox1 and pcyA) involved in the biosynthesis of CpcB were cloned and transformed into E. coli BL21 by constructing recombinant plasmid pETDuet-5. The positive transformant was screened by ampicillin resistance. The analysis of SDS-PAGE and zinc fluorescence spectrum showed that CpcB was successfully expressed in E. coli BL21 with a molecular weight of 21 kDa. The purified CpcB had a maximum absorption peak at 615 nm, and its maximum florescence emission wavelength was 640 nm. It exhibited a stronger ability to scavenge four free radicals than Vc. The color change in fresh-cut apples was obviously delayed by the CpcB treatment. These results suggest that CpcB may be used as a potential anti-browning agent for food preservation.


Subject(s)
Antioxidants , Malus , Phycocyanin , Escherichia coli/genetics , Plasmids
7.
Clin Immunol ; 257: 109818, 2023 12.
Article in English | MEDLINE | ID: mdl-37918466

ABSTRACT

Food allergy is a global food safety problem with a growing prevalence. People in industrial regions are more susceptible to allergy, but the mechanisms behind this are not fully understood. In this study, the probiotic Lactobacillus casei Zhang (LcZ) was administered to allergic individuals and the impact on allergy-related factors were determined. LcZ alleviated allergenic responses, and there was a significant correlation between the intestinal isoleucine content and IgE concentration. Metagenomics results suggest that the metabolism of the gut microbiota is a source of isoleucine. In a mouse model of food allergy, a high isoleucine diet exacerbated allergic responses and increased the activity of allergenic dendritic cell. In a dendritic cell model, a protein array revealed that the mTOR/AKT pathway mediated the function of isoleucine, and molecular docking suggested that Sestrin2 could be the potential receptor. Overall, this study revealed the role of isoleucine in promoting food allergy, elucidated the underlying mechanisms, and suggested that a high intake of isoleucine could be a potential risk factor for food allergy.


Subject(s)
Food Hypersensitivity , Intestines , Isoleucine , Animals , Humans , Mice , Allergens , Dendritic Cells , Isoleucine/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Risk Factors , Intestines/metabolism
8.
Mol Nutr Food Res ; 67(23): e2300568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867203

ABSTRACT

SCOPE: Gluten, the primary network builder of wheat dough, is responsible for celiac disease or wheat allergy. Transamidation of gluten under reduction conditions has been shown to reduce the potential toxicity of celiac disease, but its application in food preparation has not been extensively studied. This work investigates the use of transamidation in food preparation to address this gap in knowledge. METHODS AND RESULTS: This study investigates the effects of transamidation on the toxicity of commercial wheat flour and the apparent structure, digestive level, and rheological characteristics of resultant dough and steamed bread, as a typical food model. The results show that transamidation starts at the kneading stage, as evaluated by using R5 enzyme-linked immunoassay and rat basophils. The potential toxicity of celiac disease is reduced by about 83% when 1% microbial transglutaminase (mTG), 2% l-lysine, and 1% reduced glutathione (GSH) are added, while retaining the original physical and rheological properties of wheat flour. The additional of reduced GSH also improves the in vitro protein digestibility. CONCLUSIONS: Although it cannot be a celiac disease treatment directly, this study suggests that transamidation can serve as an alternative method for reducing the gluten toxicity of wheat flour-based food products.


Subject(s)
Celiac Disease , Animals , Rats , Flour , Triticum/metabolism , Glutens/chemistry , Transglutaminases/metabolism , Bread
9.
Compr Rev Food Sci Food Saf ; 22(6): 4355-4377, 2023 11.
Article in English | MEDLINE | ID: mdl-37679957

ABSTRACT

There appears a steep increase in the prevalence of food allergy worldwide in the past few decades. It is believed that, rather than genetic factors, the recently altered dietary and environmental factors are the driving forces behind the rapid increase of this disease. Accumulating evidence has implied that external exposures that occurred in prenatal and postnatal periods could affect the development of oral tolerance in later life. Understanding the potential risk factors for food allergy would greatly benefit the progress of intervention and therapy. In this review, we present updated knowledge on the dietary and environmental risk factors in early life that have been shown to impact the development of food allergy. These predominantly include dietary habits, microbial exposures, allergen exposure routes, environmental pollutants, and so on. The key evidence, conflicts, and potential research topics of each theory are discussed, and associated interventional strategies to prevent the disease development and ameliorate treatment burden are included. Accumulating evidence has supported the causative role of certain dietary and environmental factors in the establishment of oral tolerance in early life, especially the time of introducing allergenic foods, skin barrier function, and microbial exposures. In addition to certain immunomodulatory factors, increasing interest is raised toward modern dietary patterns, where adequately powered studies are required to identify contributions of those modifiable risk factors. This review broadens our understanding of the connections between diet, environment, and early-life immunity, thus benefiting the progress of intervention and therapy of food allergy.


Subject(s)
Environmental Pollutants , Food Hypersensitivity , Female , Pregnancy , Humans , Food Hypersensitivity/prevention & control , Food Hypersensitivity/epidemiology , Food Hypersensitivity/etiology , Diet , Risk Factors , Feeding Behavior
10.
Front Nutr ; 10: 1276929, 2023.
Article in English | MEDLINE | ID: mdl-37680896
11.
Food Funct ; 14(11): 5342-5354, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37211863

ABSTRACT

Advanced glycation end-products (AGEs) are a group of heterogeneous compounds formed during the Maillard Reaction (MR) and have been proven to be detrimental to human health. In addition to thermally processed foods, the digestive tract may be an additional site for exogenous AGE formation since the MR would possibly occur between (oligo-)peptides, free amino acids, and reactive MR products (MRPs) such as α-dicarbonyl compounds (α-DCs) along the digestion. In this study, through establishing a simulated gastrointestinal (GI) model consisting of whey protein isolate (WPI) and two typical α-DCs, i.e., methylglyoxal (MGO) or glyoxal (GO), we first validated that co-digestion of WPI with α-DCs generated extra amounts of AGEs in a precursor-dependent manner, especially seen in the intestinal stage. At the end of GI digestion, the contents of total AGEs in WPI-MGO and WPI-GO systems were 4.3-242 and 2.5-73.6 times higher than those formed in the control system, respectively. Evaluation of the protein digestibility further showed that AGE formation along the digestion process slightly affected the digestibility of whey protein fractions. However, as sequenced and identified by high-resolution mass spectrometry, different types of AGE modifications were identified in peptides released from ß-lactoglobulin and α-lactalbumin in the final digests, as well as changes in peptide sequence motifs. This suggested that the glycated structures formed during co-digestion affected the action of digestive proteases toward whey proteins. Overall, these results highlight the GI tract as an additional source of exogenous AGEs and provide new insights into the biochemical consequences of MRPs in heat-processed foods.


Subject(s)
Magnesium Oxide , Maillard Reaction , Humans , Whey Proteins/metabolism , Magnesium Oxide/metabolism , Glyoxal/chemistry , Pyruvaldehyde/metabolism , Peptides/metabolism , Glycation End Products, Advanced/metabolism , Gastrointestinal Tract/metabolism , Digestion
12.
Food Res Int ; 169: 112842, 2023 07.
Article in English | MEDLINE | ID: mdl-37254415

ABSTRACT

Currently, the biological consequences of advanced glycation end-products (AGEs) and their link to the antigenicity of food allergens are largely unknown due to the uncertainty in their digestive fates within the body. In this study, the influence of glycation derived from α-dicarbonyl compounds (α-DCs), precursors of AGEs, on digestive behaviors of ovalbumin (OVA) was investigated in a two-step simulated gastrointestinal (GI) model. Methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone were selected as typical α-DCs to obtain glycated OVA with different AGE-modifications (AGE-Ms). It was unveiled that α-DC-glycation reduced the digestibility of OVA via blocking tryptic cleavage sites and inducing steric hindrance, especially seen in the GO- and MGO-OVA groups. The formed AGE-Ms, depending on the precursor type, showed masking effects on the epitopes of OVA, which counteracted the negative effects of reduced digestibility on its antigenicity. Substantial changes in the peptide release patterns were also noted in glycated OVA, including alterations in the sequences and structures of several known protease-resistant epitopes of OVA. This study provides new insights into the nutritional and healthy effects of MRPs in heat-processed foods, as well as their potential connection to the modulation of egg allergy.


Subject(s)
Glycation End Products, Advanced , Maillard Reaction , Ovalbumin/chemistry , Glycation End Products, Advanced/chemistry , Magnesium Oxide , Peptides , Glyoxal/chemistry , Pyruvaldehyde
13.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766168

ABSTRACT

Rice bran is a "treasure house of natural nutrition". Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides.

15.
Int J Biol Macromol ; 231: 123203, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36623619

ABSTRACT

For food packaging, a novel composite film was prepared by solution casting method using hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and zinc oxide nanoparticles as raw materials. The composite film successfully compounded the nanoparticles, as deduced by spectroscopy, crystallography and morphology observation. The addition of CMCS and ZnO enhanced the solvent resistance (the water solubility of the composite film was reduced by 94.3 %) and UV shielding ability (the UV shielding capacity of the composite film was increased by 45.73 %) of the composite film, thus improving the application prospects of the composite film in water-rich foods. In addition, the synergistic effect of CMCS and ZnO helped the composite film to efficiently inhibit the pathogenic bacteria Listeria monocytogenes and Pseudomonas aeruginosa (rate of inhibition>99.99 %) in food. The addition of CMCS and ZnO also significantly improved the elasticity (improve 494.34 %) and maximum load capacity (improve 142.24 %) of the composite film.


Subject(s)
Chitosan , Zinc Oxide , Food Packaging , Chitosan/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Water , Cellulose/chemistry
16.
Int J Biol Macromol ; 233: 123414, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36708891

ABSTRACT

Accurate and efficient detection of food freshness is of great significance to guarantee food safety. Herein, pH sensitive colorimetric films with considerable biological activities have been prepared by combining red cabbage anthocyanin extracts (RCE) with collagen hydrolysate-chitosan (CH-CS) matrix film. The formation mechanism of CH-CS-RCE films was discussed by SEM, FT-IR and XRD, which showed that RCE was successfully fixed in CH-CS film through hydrogen bonding and electrostatic interaction. The CH-CS-RCE films exhibited good mechanical properties, high barrier ability, excellent thermal stability, significant antioxidant and antimicrobial activity, and especially sensitive response to pH and ammonia. Fickian diffusion was the main mechanism for the release of RCE from CH-CS-RCE films and such release mechanism facilitated the maintenance of functional features of films. During the storage of shrimps at 4 °C, CH-CS-RCE2% showed a remarkable preservation effect on shrimps, and their shelf life was prolonged from 2 d to 5 d. Furthermore, CH-CS-RCE2% provided a dynamic visual color switching to detect the freshness of shrimp, realizing real-time monitoring of freshness. Color information (RGB) extracted via smartphone APP was used to enhance the accuracy and universality of freshness indication. Thus, this multifunctional film has great potential in food preservation and freshness monitoring.


Subject(s)
Chitosan , Chitosan/chemistry , Food Packaging , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Collagen , Anthocyanins/chemistry
17.
Mol Nutr Food Res ; 67(5): e2200221, 2023 03.
Article in English | MEDLINE | ID: mdl-36550625

ABSTRACT

SCOPE: Epidemiologic studies suggest a link between the incidence of food allergy and the consumption of dietary advanced glycation end-products (AGEs). However, the pathogenic role of dietary AGEs in food allergy is largely unknown. This study aims to investigate the effect of allergen-specific and non-specific AGEs on the allergenic manifestation of ovalbumin (OVA), a typical food allergen in vivo. METHODS AND RESULTS: OVA is glycated by methylglyoxal to prepare allergen-specific AGEs (i.e., OVA-AGE), and a standard AIN-93G diet is heated to obtain allergen-non-specific AGEs. A BALB/c mouse model orally sensitizes to OVA with different forms of AGEs is established and the outcomes are measured as clinical signs, specific antibodies, type-2/type-2 cytokines, immune cell subpopulations, intestinal barrier function, and gut microbiota (GM) composition. The OVA-AGE which has a lower immunoglobulin E (IgE)-binding level in vitro does not reduce the allergenicity of OVA but promotes a stronger T helper 2 cells (Th2)-response than native OVA in vivo. Both forms of AGEs up-regulate the expression of splenic RAGE and aggravate the destruction of gut barrier and GM dysbiosis, especially when exposes to non-relevant AGEs. CONCLUSION: This study highlights the role of dietary AGEs in food allergy and helps to understand the biological consequences of immune-toxic compounds in modern diet.


Subject(s)
Allergens , Food Hypersensitivity , Mice , Animals , Ovalbumin , Cytokines/metabolism , Glycation End Products, Advanced , Mice, Inbred BALB C , Disease Models, Animal
18.
Front Nutr ; 9: 1036536, 2022.
Article in English | MEDLINE | ID: mdl-36532514

ABSTRACT

Allergy has become a public health problem worldwide, but effective diagnostic and therapeutic approaches are limited currently. Amino acids are essential macronutrients that potentially participated in the allergy process. This work aimed to investigate whether amino acids can be applied as a mediator for allergy diagnosis and therapy. Two cohort studies were performed to investigate the correlation between fecal amino acids and allergy responses, and a spleen cell model was used to validate the role of amino acids in regulating allergy. In a cohort study with 193 volunteers, fecal proline was found to be negatively correlated with serum IgE, and detailed data analysis revealed that people with high-IgE-mediated allergy had decreased odds of high intestinal proline. In another cohort study with distinct allergic and non-allergic individuals, proline concentration was significantly lower in the allergic group. Daily diet and metagenomics analysis showed that the proline intake and microbiota amino acid metabolism were not significantly different, implying that the body's proline metabolism might be different between allergic and non-allergic individuals. Furthermore, the spleen cell model demonstrated that proline specifically targeted Th2 and Treg activity. Overall, this work revealed a tight correlation between gut proline and serum IgE, indicating proline as a promising biomarker and a potential therapeutic method for allergic diseases.

19.
Food Funct ; 13(19): 10034-10045, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36069516

ABSTRACT

Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.


Subject(s)
Anti-Allergic Agents , Porphyra , Rhodophyta , Allergens , Animals , Anti-Allergic Agents/pharmacology , Histamine , Immunoglobulin E , Mice , Ovalbumin , Polysaccharides/chemistry , Polysaccharides/pharmacology , Porphyra/chemistry , Sulfates , Water
20.
Food Microbiol ; 108: 104104, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088118

ABSTRACT

In this study, we found the inhibitory effect of d-Tryptophan (d-Trp) on the bacterial growth and spoilage potential of P. fluorescens and S. baltica. The effectiveness of d-Trp in bacterial growth inhibition was highly dependent on environmental NaCl concentrations. The growth/no growth models were developed to clarify the relationship between salt and d-Trp concentrations for optimal growth-inhibitory effect. It showed that higher levels of NaCl (>3.5%) with d-Trp (>15 mM) are required for growth inhibition. The d-Trp treatment combined with NaCl also retarded the psychrotrophic growth and reduced the respiratory active bacteria at low temperature, indicating that the inhibitory effect of d-Trp might be associated with the tolerance to osmotic and cold stress. Furthermore, the treatment d-Trp combined NaCl (artificial seawater) on salmon fillets was investigated. During refrigerated storage, the d-Trp treated salmon fillet either inoculated with S. baltica or P. fluorescen maintained remained a relatively low level of total volatile basic nitrogen (TVBN) (below 30 mg N/100 g during 8-days storage) and delayed increase of low total viable bacteria counts (TVC) with a longer lag phase of 2 days.


Subject(s)
Pseudomonas fluorescens , Animals , Salmon , Shewanella , Sodium Chloride/pharmacology , Tryptophan/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...